AN EXPERIMENTAL PROPOSAL TO STUDY HEAVY-ION COOLING IN THE AGS DUE TO BEAM GAS OR THE INTRABEAM SCATTERING.

PDF Version Also Available for Download.

Description

Low emittance of not-fully-stripped gold (Z=79) Au{sup +77} Helium-like ion beams from the AGS (Alternating Gradient Synchrotron) injector to the Relativistic Heavy Ion Collider (RHIC) could be attributed to the cooling phenomenon due to inelastic intrabeam scattering [1,2] or due to electron de-excitations from collisions with the residual gas [3]. The low emittance gold beams have always been observed at injection in the Relativistic Heavy Ion Collider (RHIC). There have been previous attempts to attribute the low emittance to a cooling due to the exchange of energy between ions during the inelastic intrabeam scattering. The Fano-Lichten theory [4] of electron ... continued below

Physical Description

5 pages

Creation Information

TRBOJEVIC, D.; AHERNS, L.; ROSER, T.; MACKAY, W.; BRENNAN, J.; BLASKIEWICZ,M. et al. June 23, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Low emittance of not-fully-stripped gold (Z=79) Au{sup +77} Helium-like ion beams from the AGS (Alternating Gradient Synchrotron) injector to the Relativistic Heavy Ion Collider (RHIC) could be attributed to the cooling phenomenon due to inelastic intrabeam scattering [1,2] or due to electron de-excitations from collisions with the residual gas [3]. The low emittance gold beams have always been observed at injection in the Relativistic Heavy Ion Collider (RHIC). There have been previous attempts to attribute the low emittance to a cooling due to the exchange of energy between ions during the inelastic intrabeam scattering. The Fano-Lichten theory [4] of electron promotion might be applied during inelastic collisions between helium like gold ions in the AGS. The two K-shell electrons in gold Au{sup +77} could get promoted if the ions reach the critical distance of the closest approach during intra-beam scattering or collisions with the residual gas. During collisions if the ion energy is large enough, a quasi-molecule could be formed, and electron excitation could occur. During de-excitations of electrons, photons are emitted and a loss of total bunch energy could occur. This would lead to smaller beam size. We propose to inject gold ions with two missing electrons into RHIC, at injection energy, and study the beam behavior with bunched and de-bunched beam, varying the RF voltage and the beam intensity. If the ''cooling'' is observed additional X-ray detectors could be installed to observe emitted photons.

Physical Description

5 pages

Source

  • 10TH BIENNIAL EUROPEAN PARTICLE ACCELERATOR CONFERENCE (EPAC); EDINBURGH, UK; 20060626 through 20060630

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--75473-2006-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 885015
  • Archival Resource Key: ark:/67531/metadc875707

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 23, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 12, 2016, 8:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

TRBOJEVIC, D.; AHERNS, L.; ROSER, T.; MACKAY, W.; BRENNAN, J.; BLASKIEWICZ,M. et al. AN EXPERIMENTAL PROPOSAL TO STUDY HEAVY-ION COOLING IN THE AGS DUE TO BEAM GAS OR THE INTRABEAM SCATTERING., article, June 23, 2006; [Upton, New York]. (digital.library.unt.edu/ark:/67531/metadc875707/: accessed August 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.