Measurement of Strain in the Left Ventricle during Diastole withcine-MRI and Deformable Image Registration

PDF Version Also Available for Download.

Description

The assessment of regional heart wall motion (local strain) can localize ischemic myocardial disease, evaluate myocardial viability and identify impaired cardiac function due to hypertrophic or dilated cardiomyopathies. The objectives of this research were to develop and validate a technique known as Hyperelastic Warping for the measurement of local strains in the left ventricle from clinical cine-MRI image datasets. The technique uses differences in image intensities between template (reference) and target (loaded) image datasets to generate a body force that deforms a finite element (FE) representation of the template so that it registers with the target image. To validate the ... continued below

Creation Information

Veress, Alexander I.; Gullberg, Grant T. & Weiss, Jeffrey A. July 20, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The assessment of regional heart wall motion (local strain) can localize ischemic myocardial disease, evaluate myocardial viability and identify impaired cardiac function due to hypertrophic or dilated cardiomyopathies. The objectives of this research were to develop and validate a technique known as Hyperelastic Warping for the measurement of local strains in the left ventricle from clinical cine-MRI image datasets. The technique uses differences in image intensities between template (reference) and target (loaded) image datasets to generate a body force that deforms a finite element (FE) representation of the template so that it registers with the target image. To validate the technique, MRI image datasets representing two deformation states of a left ventricle were created such that the deformation map between the states represented in the images was known. A beginning diastoliccine-MRI image dataset from a normal human subject was defined as the template. A second image dataset (target) was created by mapping the template image using the deformation results obtained from a forward FE model of diastolic filling. Fiber stretch and strain predictions from Hyperelastic Warping showed good agreement with those of the forward solution. The technique had low sensitivity to changes in material parameters, with the exception of changes in bulk modulus of the material. The use of an isotropic hyperelastic constitutive model in the Warping analyses degraded the predictions of fiber stretch. Results were unaffected by simulated noise down to an SNR of 4.0. This study demonstrates that Warping in conjunction with cine-MRI imaging can be used to determine local ventricular strains during diastole.

Source

  • Journal Name: Journal of Biomechanical Engineering; Journal Volume: 127; Journal Issue: 7; Related Information: Journal Publication Date: 12/2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--54632
  • Grant Number: DE-AC02-05CH11231
  • Grant Number: NIHR01-EB00121
  • Office of Scientific & Technical Information Report Number: 886766
  • Archival Resource Key: ark:/67531/metadc875631

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 20, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 9, 2016, 10:18 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Veress, Alexander I.; Gullberg, Grant T. & Weiss, Jeffrey A. Measurement of Strain in the Left Ventricle during Diastole withcine-MRI and Deformable Image Registration, article, July 20, 2005; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc875631/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.