Experimental and numerical investigation of flow phenomena innonisothermal, variably saturated bentonite/crushed rock mixtures

PDF Version Also Available for Download.

Description

Mixtures of sodium bentonite and crushed rock are being examined as components of the engineered barrier system in a geologic repository of high-level nuclear waste. Laboratory experiments were performed to determine the thermal and unsaturated hydraulic properties of bentonite/crushed diorite mixtures. Water-retention curves were conventionally obtained from pressure cell and evaporation experiments. In addition, transient data from heating and gas injection experiments on laboratory columns were analyzed using inverse modeling techniques. Measured pressures, temperatures, and drained-water volumes were jointly inverted to estimate absolute permeability, thermal conductivity, specific heat, and capillary strength parameters. Simultaneous matching of all available data specifically the ... continued below

Creation Information

Engelhardt, Irina; Finsterle, Stefan & Hofstee, Col February 2, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Mixtures of sodium bentonite and crushed rock are being examined as components of the engineered barrier system in a geologic repository of high-level nuclear waste. Laboratory experiments were performed to determine the thermal and unsaturated hydraulic properties of bentonite/crushed diorite mixtures. Water-retention curves were conventionally obtained from pressure cell and evaporation experiments. In addition, transient data from heating and gas injection experiments on laboratory columns were analyzed using inverse modeling techniques. Measured pressures, temperatures, and drained-water volumes were jointly inverted to estimate absolute permeability, thermal conductivity, specific heat, and capillary strength parameters. Simultaneous matching of all available data specifically the gas breakthrough at the top of the column proved difficult, pointing towards aspects of the experimental design and the conceptual model that need to be refined. The analysis of sensitivity coefficients and the correlation structure of the parameters revealed the importance of accurately capturing coupled thermal hydrological processes within the column as well as the details of the experimental apparatus, such as heat losses and storage of water and gas in the measuring burette. The parameters estimated using different experimental and analytical procedures were consistent with one another, providing backfill material properties useful for the simulation of gas-and heat-generating nuclear waste repositories.

Source

  • Journal Name: Vadose Zone Journal; Journal Volume: 2; Related Information: Journal Publication Date: 2, 2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--52838
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 891806
  • Archival Resource Key: ark:/67531/metadc875594

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 2, 2003

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Engelhardt, Irina; Finsterle, Stefan & Hofstee, Col. Experimental and numerical investigation of flow phenomena innonisothermal, variably saturated bentonite/crushed rock mixtures, article, February 2, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc875594/: accessed November 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.