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Executive Summary 
 

The overall objective of this project is to metabolically engineer the E. coli sugar-
utilization regulatory systems (SURS) to utilize sugar mixtures obtained from plant biomass. Of 
particular relevance is the implementation of a metabolic engineering cycle aided by functional 
genomics and systems biology tools. Our findings will help in the establishment of a platform for 
the efficient production of fuels and chemicals from lignocellulosic sugars. Our research has 
improved the understanding of the role of SURS in regulating sugar utilization and several other 
cellular functions. For example, we discovered that Mlc, a global regulatory protein, regulates 
the utilization of xylose and demonstrated the existence of an important link between catabolite 
repression and respiratory/fermentative metabolism. The study of SURS mutants also revealed a 
connection between flagellar biosynthesis and catabolite repression. Several tools were also 
developed as part of this project. A novel tool (Elementary Network Decomposition, END) to 
help elucidate the network topology of regulatory systems was developed and its utility as a 
discovery tool was demonstrated by applying it to the SURS in E. coli. A novel method (and 
software) to estimate metabolic fluxes that uses labeling experiments and eliminates reliance on 
extracellular fluxes was also developed. Although not initially considered in the scope of this 
project, we have developed a novel and superior method for optimization of HPLC separation 
and applied it to the simultaneous quantification of different functionalities (sugars, organic 
acids, ethanol, etc.) present in our fermentation samples. Currently under development is a 
genetic network driven metabolic flux analysis framework to integrate transcriptional and flux 
data. 
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Summarize project activities for the entire period of funding, including 
original hypotheses, approaches used, problems encountered and departure 
from planned methodology, and an assessment of their impact on the project 
results.  Include, if applicable, facts, figures, analyses, and assumptions used 
during the life of the project to support the conclusions. 
 

The proposed project uses all of steps generally included in the metabolic engineering 
cycle: (1) construction of recombinant strains with improved properties, (2) analysis of the 
recombinant strains, especially their performance compared with the original strain background, 
and (3) design of the next target for genetic engineering. The overall objective is to metabolically 
engineer the E. coli sugar-utilization regulatory systems (SURS) to utilize sugar mixtures 
obtained from plant biomass. The work will also improve understanding of the role of SURS in 
regulating sugar utilization and several other cellular functions. We have six Specific Aims, of 
which research for Aims 1-5 are scheduled in Years 1 and 2. The main part of the work in year 1 
was devoted to specific aims 1 and 2 (construction and initial evaluation of E. coli strains with 
modified SURS). During the second year, evaluation of selected strains using tools that allow 
large-scale study of cellular responses to these modifications (i.e. NMR-based metabolic flux 
analysis, MFA, and genome-wide transcriptional analysis) was started. Due to the cyclic nature 
of metabolic engineering, certain overlap on time is expected between the work proposed in each 
specific aims.  

Two opportunities exist within this project to further study some related problems. The 
first is the development of an optimization framework for HPLC separation, the results of which 
will be of great practical value in the phenotypic characterization of E. coli mutants in the study: 
i.e. for the simultaneous quantification of fermentation substrates and products (sugars, alcohols, 
organic acids, etc.). Also, an HPLC optimization software with built-in retention models for a 
widely used column will serve as a real research tool for use by other researchers. The second 
opportunity is characterization of the hybridization process in DNA microarray using molecular 
dynamics simulation. Results of this study will offer insights into a crucial but uncharacterized 
process in the microarray experiment, and specifically, provide a deterministic measure of non-
specific hybridization in microarrays, and in silico hybridization as a new paradigm in design 
and validation of oligonucleotides for microarrays. Results in these two areas are presented on 
this report 
 
Specific Aims: 

1. Construct E. coli strains with modified SURS by introducing genetic modifications to 
single and multiple components of the system. 

2. Evaluate the capability of these mutants to efficiently utilize glucose, xylose, and 
arabinose.  

3. Evaluate changes in the regulation of gene expression at genomic scale resulting from 
engineering E. coli SURS using DNA microarray technology. 

4. Identify functional metabolic pathways and quantify their fluxes in SURS mutants and 
wild type strains by using a novel flux analysis technique based on bondomer analysis of 
2D NMR bond-labeling experiments. 



R. Gonzalez, J.V. Shanks, and K-Y. San; March, 2006 

 3 

5. Integrate these results using a novel genetic network based MFA model that combines 
gene expression and metabolic flux data. 

6. Propose further modifications for improving the properties of SURS mutants.  
 
Timetable 
Specific Aim (Laboratory in chargea) Year 1 Year 2 Year 3 
Construct E. coli strains with modified SURS (I,)    
Evaluate the capability of SURS mutants for utilizing sugar mixtures (I, II)    
Evaluate genome-wide changes in gene expression in SURS mutants (I)    
Metabolic characterization (NMR-based MFA) of SURS mutants (II)    
Integrate gene expression and metabolic flux data (III)    
Propose further modification for 2nd generation of SURS mutants (I, II, III)    
a) I, Dr. Gonzalez’s Laboratory (ISU); II, Dr. Shanks’ Laboratory (ISU); III, Dr. San’s Laboratory (Rice). 

 
Specific Aim 1. Construct E. coli strains with modified SURS by introducing genetic 
modifications to single and multiple components of the system. 

 
Deletion mutants ΔptsG, ΔptsH, ΔptsI, ΔptsHIcrr, Δmlc, and Δcra were prepared from 

wild type E. coli W3110 (ATCC #27325) using a one step gene inactivation method according to 
Datsenko and Wanner [Proc. Natl. Acad. Sci. USA. 2000, 97, 6640-6645]. In this method, a PCR 
insert was first created from a pKD4 template and primers with flanking regions homologous to 
start and end sequences of the gene to be inactivated, resulting in an insert with kanamycin 
resistance gene at the center, sandwiched between 2 FRT (FLP recognition target) sites, and 
outer homology regions. Wild type cells expressing λ Red recombinase (transformed with 
pKD46, grown at 30 °C) were transformed with the PCR insert, and gene sequence between the 
two homology regions were replaced with the FRT::Km::FRT sequence through recombination. 
Positive mutants were selected by plating on LB with kanamycin plates. To eliminate kanamycin 
resistance gene, the mutants were transformed with pCP20, a temperature sensitive plasmid 
expressing FLP. FLP expressed from this plasmid cut the Km region from the FRT::Km::FRT 
site, leaving one FRT site behind. pCP20 was then removed by growing the cells at 43 °C. 

Plasmids pPLc28 encoding CRP* D53H, G141Q, G141K, and L148R [44] were donated 
by James C. Lee (University of Texas, Galveston, TX). CRP* strains ET24 and ET25 were 
donated by Winfried Boos (University of Konstanz, Konstanz, Germany). Coding regions of 
either plasmid or chromosomal crp* gene were cloned into pUC19 with restriction sites BamHI 
and HindIII. For plasmid bearing cyaA*, an insert coding a 48 kDa, C-terminal truncated AC was 
prepared according to Crasnier et al. [Mol. Gen. Genet. 1994, 243, 409-416], and cloned into 
pUC19 with restriction sites XbaI and PstI. Transformation of viable wild type cells was done 
using an electroporator (Eppendorf), followed by incubation in SOC medium for 1 hour at 37 °C, 
and selection on LB + ampicillin plates. Primers used for knockout mutation and cloning are 
given below. 
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Specific Aim 2. Evaluate the capability of SURS mutants to efficiently utilize sugar 
mixtures. 

 
Regulatory networks in Carbon Catabolite Repression (CCR) are quite complex because 

of the high degree of interactions between associated genes, proteins, and metabolites. This 
complicates the interpretation of the results obtained during the evaluation of the aforementioned 
mutants. With this as motivation, we developed a novel tool (Network Decomposition Table, 
NDT) to help elucidate the network topology of regulatory systems. Through systematic 
enumeration of highest level mechanistic interactions, lower level interactions can be inferred in 
a self-consistent manner through arithmetic operations, and hence a compact framework into 
which all existing knowledge about the regulatory networks can be integrated. Application of 
NDT to the SURS networks is presented below. 
 
Network decomposition table 
  It is clear that the cellular mechanisms of SURS form a complex network topology 
between genes, proteins, and metabolites. Even if only the central elements are considered 
(IIAglc, AC, CRP-cAMP, glucose), many regulatory interactions are operative: 
1. IIAglc~P activates AC. 
2. AC converts ATP to cAMP. 
3. cAMP activates CRP (forms CRP-cAMP complex). 
4. CRP-cAMP modulates crp transcription (both positive and negative autoregulation). 
5. CRP-cAMP represses cyaA transcription. 
6. CRP-cAMP lowers the phosphorylation state of IIAglc 
7. Glucose represses crp transcription. 
8. Glucose lowers the phosphorylation state of IIAglc (through PTS transport). 

These interactions can be represented graphically in a diagram such as Figure 1. 
However, as more elements are introduced into the network, more interactions will emerge, 
which adds more connecting lines to the diagram. Eventually, it will be difficult to come up with 
an aesthetic representation of the network because of crowding and intersecting lines. Even then, 
correlations between elements will not be immediately obvious. For example, glucose lowers 
cAMP level, but this is not apparent in Figure 1, because only mechanistic interactions are 
depicted (glucose-cAMP correlation has to be traced back through ATP, AC, and IIAglc~P).  

Motivated by the limitations of schematic diagrams as discussed above, we propose a 
novel scheme for representation of regulatory networks, i.e., Network Decomposition Table 
(NDT). NDT has interesting features:  (1) all knowledge about regulatory interactions in the 
network can be integrated/summarized within a compact representation, (2) construction of NDT 
requires no aesthetic effort in spatial arrangement of the network elements, (3) new elements and 
knowledge can be easily appended, and conversely, smaller subsets of the network can be easily 
extracted, (4) correlations between elements are self-consistent and explicitly presented, and (5) 
everything follows simple arithmetic rules of addition and multiplication. From the name, 
decomposition implies that the network is broken down to its smallest elements, and built again 
from the ground up. The following is an example of application of NDT to the regulatory 
networks in SURS. 

Consider a network subset with only three elements; crp gene, CRP protein, and 
extracellular glucose (Table 1). Gene notation in the table (e.g., crp) represents extent of 
transcription or mRNA abundance. Notations for metabolites (e.g., glucose) and non-enzyme 



R. Gonzalez, J.V. Shanks, and K-Y. San; March, 2006 

 5 

proteins (e.g., CRP) represent abundance. Elements are first enumerated in the first row and first 
column – the vertical ones are exerting / causing interactions to the horizontal ones. The diagonal 
cells are empty (self-interactions are not considered / relevant), so the number of possible entries 
is n(n-1), where n is the number of elements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Network representation of central elements in CCR 

 
 

Table 1. Decomposition of network elements 

 

 c
rp

 

 C
R
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 g
lu

co
se

ex
t 

crp  1  

CRP    

glucoseext -1 -1  

 

As crp encodes for CRP, the entry 
CRP

crp , i.e., the influence / contribution of crp 

transcription on CRP abundance is marked 1 (positive). Similarly, 
crp

extglucose
 is marked -1 

because glucose represses crp transcription (transport of extracellular glucose is implied). These 
are mechanistic / highest level interactions, so the entries are in black. As will be explained later, 
the magnitude of these entries is less important than the direction (positive/negative). From the 2 
entries, an inference can be made: glucose represses crp transcription, and crp encodes CRP; 
therefore, glucose represses CRP level. The inference can be represented by the notation: 

glucose 

cyaA                 AC 

crp 

CRP 

cAMP 

ATP 

IIAglc~P IIAglc CRP-cAMP + 
_ 

+ 
_ + 

_ 

+ + 
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1)1)(1(
CRP

glucose

CRP

glucose extext !=!==
crp

crp
 

 
As this interaction is inferred rather than mechanistic, it is marked green in the table. 

Notice that the inference follows a simple arithmetic rule of multiplication, and exhibits the 
structure depicted by arrows on Table 1. If two entries interesect at an identity cell forming an L-
shaped structure, the entry at the opposite diagonal can be calculated / inferred by multiplication. 
Also, note that the direction of inference (what causing what) is preserved, i.e., the inferred 

interaction is 
CRP

glucoseext , not 
extglucose

CRP . 

Now consider a bigger network, i.e., the one depicted in Figure 2 (Table 2). Enzyme 

notation (e.g., AC) represents activity; AC activation is represented by
AC

P~IIAglc  = 1. Note 

that both CRP and cAMP are considered positive influence on CRP-cAMP complex, 

.1
cAMP-CRP

cAMP

cAMP-CRP

CRP
==  Repression of cyaA transcription and IIAglc~P 

dephosphorylation by CRP-cAMP are represented by 
cyaA

cAMP-CRP  and
P~IIA

cAMP-CRP
glc

. Both 

are assigned a negative number but with smaller magnitude (-0.1); the reason will become 

apparent later. As the entry for
AC

cAMP-CRP can be achieved from more than one direction, the 

inference is additive / follows arithmetic addition: 
 

 
AC

cAMP-CRP   = 
AC

cAMP-CRP cyaA

cyaA
 + 

AC

P~IIA

P~IIA

cAMP-CRP glc

glc
 

 = (-0.1)(1) + (-0.1)(1) = -0.1 – 0.1 = -0.2 (shaded yellow). 
 

The negative control exerted by 
AC

cAMP-CRP  seems to propagate through the lower-

level interactions 
cAMP

cAMP-CRP , 
cAMP

CRP , until it reaches 

 

cAMP

crp   = 
cAMP

CRP

CRPcAMP

cAMP-CRP

cAMP-CRPcAMP

crpcrpcyaA

cyaA

crp
++   

 = -1.1 
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cAMP 

+ 

- 

crp  

PEP  
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EI 
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HPr P-IIA
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+ 
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(Xyl) ext 

 

(Ara) ext  
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int  

xylAB
 

araBAD
 

PPP
 Glycolysis

 

gly colytic genes  

PPP genes
 

glycolytic genes
 

Fermentative and 

gluconeogenic genes
 

+ - 
      other  

     genes
 

- 

- 
+ 

+ - 

manXYZ  

- 

- + 
+ 

- 

+ 

- 
Mlc  

Cra 

+ 

CRP-cAMP  

PEP/PYR  

ptsHIcrr  
- 

 IIBC
Glc

 

xylFGH  

araFGH  

 xylE/araE  

Fermentation
 

fermentative genes
 

Figure 2. Schematic representation  of: (1) transport of sugars: glucose by PTS, 

xylose and arabinose by ABC and proton symport, and sugar S by an specific 

permease; (2) conversion of sugars into glycolytic intermediates; (3) metabolism of 

PEP/PYR via fermentative pathways; and (4) regulati on of genes involved in the 

above pathways by PTS, and global regulators CRP -cAMP, Cra, and Mlc. Individual 

genes and correspondent operons are illustrated by italics. Global regulators are 

shown inside shaded boxes. Broken lines indicate regulatory pathwa ys. Thick arrows 

illustrate the flow of carbon from sugars into fermentation products. Thin arrows 

illustrate the reactions of PTS for glucose transport and phosphorylation.  

catabolites
 

 
 
Table 2. NDT of CRP, AC, IIAglc, and glucose 

 

cr
p 

C
R

P 

C
R

P-
cA

M
P 

cy
a 

AC
 

cA
M

P 

cr
r 

IIA
gl

c  

IIA
gl

c ~P
 

gl
uc

os
eex

t  

crp  1 1 -0.2 -0.7 -1.1     
CRP   1 -0.1 -0.3 -0.5     
CRP-cAMP -1 -1  -0.1 -0.2 -0.4   -0.1  
cya     1 1     
AC      1     
cAMP   1        
crr     1 1  1 1  
IIAglc           
IIAglc~P     1 1     
glucoseext -1 -1 -1 0.1 0.2 0.2     
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This is consistent with Δcrp mutation: 1.1)1.1)(1(
cAMPcAMP

=!!=
"

=
" crp

crp

crpcrp , i.e., Δcrp 

mutants accumulate cAMP (note that Δcrp is actually not a network element, but the inference 
suits the notation very well). A similar propagation also happens in 
 

AC

crp   = 
AC

CRP

CRPAC

cAMP-CRP

cAMP-CRPAC

crpcrpcyaA

cyaA

crp
++   

 = -0.7. 
 

As 1
cAMPcAMP

==
crrcyaA , 1)1)(1(

cAMPcAMP
!=!=

"
=

" cyaA

cyaA

cyaAcyaA and  

 

1)1)(1(
cAMPcAMP

!=!=
"

=
" crr

crr

crrcrr , which is consistent with low cAMP levels in ΔcyaA 

and Δcrr mutants. One thing that is not consistent with CCR is a positive
cAMP

glucoseext , which 

should be negative. This is because so far only positive influence of glucose on cyaA 
transcription is taken into account; the major regulation of cAMP level comes from a negative 
influence by glucose through dephosphorylation of IIAglc~P via PTS transport. This part is 
explained in the following. 

 Balance of phosphorylated species in the PTS system is crucial in SURS. Therefore, the 
phosphoryl transfer reactions are represented by stoichiometric entries in NDT. Consider the first 
reaction: PEP + EI  EI~P + Pyruvate (Eq. 1). If EI~P level goes up, that means pyruvate also 

goes up, but PEP and EI go down, i.e.,
Pyruvate

P~EI  = 1, 1
EI

P~EI

PEP

P~EI
!==  (third row in 

Table 3). The same stoichiometry is evident when pyruvate goes up (fifth row). Stoichiometric 
entries are considered mechanistic / highest level interactions, but are marked red to distinguish 
them from regulatory interactions. Entries arising from the reverse reaction may provide extra 

information – these are marked in blue (rows 2 and 4). With 
EI

ptsI = 1, 
P~EI

ptsI  actually can 

be inferred, i.e., 
P~EI

ptsI =
EI

ptsI

P~EI

EI  = (1)(-1) = -1. But this is not meaningful, as 

increase in ptsI transcription does not lower EI~P level, unlike the stoichiometric balance of EI 

and EI~P. This is easily solved by specifying 
P~EI

ptsI  = 1 as highest-level interaction, which 

cannot be bypassed by inference.  
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Table 3. Stiochiometric representation of phosphoryl transfer reaction 
 

 

 p
ts

I 

 E
I 

 E
I~

P 

 P
E

P 

 P
yr

uv
at

e 

ptsI  1 1   
EI   -1 1 -1 
EI~P  -1  -1 1 
PEP  1 -1  -1 
Pyruvate  -1 1 -1  

 
 
The complete phosphoryl trasfer reactions of the glucose PTS (Eqs. 1 – 5) are represented 

in Table 6. Some important inferences from this table include: 
 

1)1)(1(
P~IIA

HPr

HPrP~IIA glcglc
===

ptsHptsH  (7) 

 

P~IIAglc
ptsI   = 

P~IIA

P~HPr

P~HPr

P~EI

P~EIP~IIA

P~EI

P~EI glcglc

ptsIptsI
=   

 = 
P~IIA

HPr

HPr

P~HPr

P~HPr

EI

EI

P~EI

P~EI glc

ptsI  

 1)1)(1)(1)(1)(1( =!!=  (8) 
 

1)1)(1(
P~IIA

P~IICB

P~IICBP~IIA glc

glc

glcglc
!=!==

ptsGptsG  (9) 

 

1)1)(1(
P~IIA

P~IICB

P~IICB

glucose

P~IIA

glucose
glc

glc

glc

ext

glc

ext !=!==  (10) 

 
From (Eqs. 7-8) it is apparent now that both ptsH and ptsI are involved in the 

phosphorylation of IIAglc. The result of ΔptsH mutation is therefore 

1)1)(1(
P~IIAP~IIA glcglc

!=!=
"

=
" ptsH

ptsH

ptsHptsH , i.e., ΔptsH mutants have low level of 

IIAglc~P (and thus low cAMP level). The same applies for ΔptsI mutants. (Eq. 9) comes straight 
from the fact that IICBglc dephosphorylates IIAglc~P – ΔptsG mutation increases IIAglc~P level. 
Finally, (Eq. 10) shows that extracellular glucose, through PTS transport, lowers the 
phosphorylation state of IIAglc~P. 
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Tables 2 and 4 can be combined to form a bigger network (Table 5). Now 

cAMP

glucoseext is in the correct direction (negative) because both relief of cyaA transcription 

repression by CRP-cAMP and reduction of AC activity due to IIAglc~P dephosphorylation are 
taken into account: 

 

AC

glucoseext  =
AC

P~IIA

P~IIA

glucose

AC

cAMP-CRP

cAMP-CRP

glucose glc

glc

extext

+  (11) 

  = (-1)(-0.2) + (-1)(1) = -0.8 
Therefore,  
 

cAMP

glucoseext   =
cAMP

P~IIA

P~IIA

glucose

cAMP

AC

AC

glucose glc

glc

extext

+   

 = (-0.8)(1) + (-1)(1) = -1.8 
(Eq. 11) is the only additive entry in the table having opposite influences. This explains why 
negative control of CRP-cAMP were initially assigned a lower magnitude than the positive 

control of IIAglc~P, i.e., 
cyaA

cAMP-CRP  =
P~IIA

cAMP-CRP
glc

= -0.1, 
AC

P~IIAglc  = 1. Otherwise, 

the balance of (Eq. 11) will go in the wrong direction. This means that at this point, the NDT in 
Table 5 is meaningful only as far as the directions of control go, i.e. the positive or negative 
signs of the entries. The magnitudes of these entries become important only when an additive 
entry has both positive and negative influences, such as (Eq. 11).  

New elements in Table 5 include LacY, which is under inducer exclusion 

1
LacY

IIAglc
!= and transcription repression 1

cAMP-CRP

glucoseext
!= . Consequently, glucose inhibits 

lactose transport: 
LacY

IIA

lIA

glucose

LacY

glucose

LacY

glucose glc

glc

extextext

+=
lacY

lacY
 = (-1)(1)+ (1)(-

1) = -2. Transcription of the xylose operon is repressed by glucose, i.e., 

.1)1)(1(
cAMPCRP

cAMPCRP

glucoseglucose extext

!=!=
!

!
=

xylxyl
 

ptsG transcription is downregulated by Mlc, 1
Mlc

!=
ptsG

. ptsG transcription is correlated to 

transcription of the xylose operon: 
 

xyl

ptsG  = 
xyl

ptsG cAMPCRP

cAMP-CRP

cAMP

cAMP

P~IIA

P~IIA

P~IICB

P~IICB

glc

glc

glc

glc

!  

 = (1)(-1)(1)(1)(1) = -1. 
Therefore, ΔptsG upregulates xyl transcription: 
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 .1)1)(1( =!!=
"

=
"

xyl

ptsG

ptsG

ptsG

xyl

ptsG   (12) 

 
This example of application to SURS shows how NDT can integrate and summarize 

knowledge about regulatory networks into a compact form, where correlations between network 
elements can be explicitly presented. Once mechanistic interactions are set as highest-level 
entries, other interactions can be inferred in a self-consistent manner through simple rules of 
arithmetic multiplication and addition. Perhaps the most interesting aspect of NDT is that it can 
show how exertion of regulatory control can propagate through cooperativity with lower-level 

interactions, such as in the case of 
cAMP

crp .  

 
Table 4. Phosphoryl transfer reactions of glucose PTS 

 

 c
rr

 

 II
Agl

c  

 II
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 p
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 p
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H
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Pr

 

 H
Pr
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 p
ts

G
 

 II
Bgl

c  

 II
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c ~P
 

 g
lu

co
se

ex
t  

 G
6P

 

crr  1 1              
IIAglc   -1          -1 1   
IIAglc~P  -1        1 -1      
ptsI   1  1 1           
EI      -1    -1 1      
EI~P   1  -1  -1 1   -1      
PEP                 
Pyruvate     -1 1 -1          
ptsH   1       1 1      
HPr  -1 1        -1      
HPr~P   -1  1 -1    -1       
ptsG   -1          1 1   
IIBglc              -1 -1 1 
IIBglc~P  1 -1          -1    
glucoseext   -1          -1 1  -1 
G6P             1 -1 -1  

 
In order to elucidate the topology of a regulatory network, first it is broken down to the 

smallest elements; genes, proteins, metabolites, phoshorylated/unphosphorylated species, 
allosteric effectors, and transcriptional repressors/activators. By arrangement of these n elements 
into a n × n table, the network is then rebuilt from the ground up through complete enumeration 
of all possible n(n-1) interactions. This is easily done using a spreadsheet, which also prevents 
circular reference in building inferences, and accomodates network expansion/reduction by 
simple row and column insertion/deletion. 
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Table 5. Network decomposition table accounting for essential elements and regulatory mechanisms in CCR 
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 la
cY

 

 L
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Y 
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crp 
  

1 1 -0.2 -0.7 -1.1                         

CRP     1 -0.1 -0.3 -0.5                         

CRP-cAMP -1  -1    -0.1 -0.2 -0.4     -0.1               1 1   

cyaA         1 1                         

AC           1                         

cAMP     1                               

crr         1 1    1 1                               

IIAglc                 -1                     -1 1     -1  

IIAglc~P         1 1   -1                 1 -1             

glucoseext -1 -1 -1 0.1 -0.8 -1.8   1 -1                     -1 1 -1 -1 -1 -2  

ptsI   1  1 1     1     1 1                       

EI                   -1       -1 1             

EI~P           1     -1   -1 1     -1             

PEP                                           

Pyruvate                 -1 1 -1                     

ptsH   1  1 1     1               1 1             

HPr         -1 1                 -1             

HPr~P           -1     1 -1       -1               

ptsG   -1  -1 -1     -1                     1 1   -1    

IIBglc             -1                     -1 1     

IIBglc~P         1 -1                     -1         

G6P             -1                   1 -1       

xyl                            

lacY                          1  

LacY                            

Mlc                   -1         
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Some immediate improvements to NDT are in order. Lower-level/inferred interactions 
(green) are already distinguished from mechanistic/highest-level interactions (black, red, blue), 
but a proper hierarchy can be displayed with an extended color coding scheme, e.g., pink for 
second-level interactions, cyan for third-level interactions, etc. Note that negative crp 

autoregulation ( 1
cAMP-CRP

!=
crp

) is included in the example, but this rules out positive 

autoregulation. This can be solved by increasing the NDT resolution to account for different 
promoter/operator sites. As CRP-cAMP binds to different operator sites in negative and positive 
autoregulation [Mol. Microbiol. 1992, 6, 2489–2497], this can be represented by 

1
cAMP-CRP

1

!=
crp

 and 1
cAMP-CRP

2

=
crp

, with crp1 and crp2 indicating extent of crp 

transcription initiated from sites 1 and 2. 
As mentioned previously, at this point the significance of NDT only goes so far as 

elucidating qualitative control. When an interaction has both positive and negative influences, 
e.g., (Eq. 11), the magnitude of the corresponding mechanistic/highest-level entries should be 
appropriately assigned so that the resulting interaction goes in the right direction. It may be 
possible to achieve a more quantitative representation of regulatory control, in which case the 
NDT entries will be analogous to the control coefficients in Metabolic Control Analysis [Trends 
Biochem. Sci. 1985, 10, 16], but this will require experimental data. For example, comparison of 
cAMP levels in Δcrp and Δcrr mutants will be useful in assigning values for 

cAMP

crp and
cAMP

crr . However, these are very low-level interactions in NDT, which would 

not be directly applicable to the highest-level mechanistic interactions, 
cyaA

cAMP-CRP , 

P~IIA

cAMP-CRP
glc

, and
AC

P~IIAglc . 

The ultimate goal of whole-cell modeling is to account for changes in cellular state in a 
dynamic setting. Kremling et al. described a kinetic model of E. coli exhibiting glucose-lactose 
diauxie, taking into account the glucose PTS system, lactose transport, inducer exclusion, and 
transcription of ptsG, cyaA, crp and activation of their corresponding proteins [Metab. Eng. 
2001, 3, 362-379]. However, not all known mechanistic interactions are included in the model, 

e.g.,
crp

extglucose
, 

P~IIA

cAMP-CRP
glc

. In this respect, the value of NDT is that it serves as a 

complete catalog of all known regulatory mechanisms, so it will be easy to detect if an important 
interaction is left out. Although NDT aims to achieve different goals than dynamic cell models, 
vertical entries in a column represent factors influencing the element assigned to that column, 
analogous to the positive and negative terms in a kinetic expression. Therefore, from the kinetic 
point of view, NDT entries can be thought of as instantaneous representation of all factors 
influencing a dynamic variable.  

It would be interesting to see application of NDT to other systems. The regulatory 
network for flagellar biosynthesis in E. coli has been studied well. The dynamic model of Kalir 
and Alon [Cell. 2004, 117, 713-720] is based on a structured diagram connecting the master 
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regulators FlhDC and FliA to transcriptional units of the flagellar genes with activation 
coefficients. It appears that conversion of this diagram to NDT would be particularly suitable.  

 
Phenotypic characterization of PTS mutants 

Our strategy includes characterization of the growth and sugar consumption profiles of 
PTS and related mutants: ΔptsG, ΔptsH, ΔptsI, ΔptsHIcrr, Δmlc, and Δcra, as well as CRP* and 
AC*. Cell culture in batch mode is advantageous because the CCR phenotype (diauxie/no 
diauxie) can be directly observed, and consumption/production rates can be related to industrial 
scale fermentation, which is commonly done in batch mode as well. 
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Figure 3. Growth and sugar consumption profiles of W3110 and ΔptsG. CCR is relieved in 
ΔptsG as indicated by lack of diauxie and simultaneous consumption of glucose and xylose. 

 
Figure 3 shows the growth and sugar consumption profiles of W3110 and ΔptsG. As 

expected, W3110 shows exhibits CCR; diauxic growth and sequential consumption of glucose 
and xylose. ΔptsG, shows simultaneous consumption of glucose and xylose and no diauxic 
growth. CCR is relieved in ΔptsG because glucose transport through PTS is impaired – the cell 
still can transport glucose through GalP or the mannose PTS, although with lower efficiency / 
slower rate. This is evident in the dramatic change in specific growth rate (about 50% decrease). 
In terms of CCR mechanism, ptsG inactivation means IIAglc~P is not dephosphorylated by 
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IICBglc because it is not expressed. Therefore, cAMP level is not repressed, and thus xylose 

genes are expressed. In NDT notation, this is inferred as 1=
!

xyl

ptsG (Eq. 12).  

 The CCR behavior of W3110 or ΔptsG does not change with sugar concentration, but 
this is not the case in ΔptsH and ΔptsI (Figure 4). Both of these strains exhibit CCR when grown 
on 5 g/L glucose + 5 g/L xylose (high sugar), but not on 2 g/L glucose + 2 g/L xylose (low 
sugar). It is surprising that glucose is consumed at all. ΔptsH and ΔptsI are not supposed to be 
able to utilize PTS carbohydrates (except fructose), because phosphoryl transfer to the 
corresponding enzyme II cannot occur. To explain glucose consumption, it must be assumed that 
PTS transport somehow resumes due to substitute phosphoryl donors, bypassing the inactivated 
gene (direct phosphorylation of HPr for ΔptsI, or direct phosphorylation of IIAglc for ΔptsH). 
There is no immediate explanation of how this substitution can proceed.  Note that galP 
expression is repressed during growth on glucose [Biotechnol. Bioeng. 2003, 83, 687-694]. IIAglc 
can be phosphorylated by FPr, but this occurs only during growth on fructose. Phosphorylation 
of IIAglc by acetate kinase also requires EI and HPr [J. Biol. Chem. 1986, 261, 13498-13503]. EI 
can be phosphorylated by EI kinase [J. Biol. Chem. 1996, 271, 15285–15291], but this does not 
help in the case of ΔptsI or ΔptsH. HPr can be phosphorylated by HPrK (HPr kinase) but only in 
gram-positive bacteria (E. coli is gram-negative) [J. Bacteriol. 2003, 185, 4003-4010].  

Xylose consumption in these strains is also contrary to published reports [Escherichia 
coli and Salmonella: Cellular and Molecular Biology, 2nd ed.; Niedhardt, F.C., Curtiss III, R., 
Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S., Riley, M., Schaechter, M., Umbarger, 
H.E., Eds.; American Society for Microbiology: Washington, D.C., 1996; pp 1149-1174] – 
xylose (class II compound) requires high cAMP for its gene expression, but cAMP level is low 
in ΔptsI and ΔptsH because of lack of phosphorylation in IIAglc. Assuming that the glucose PTS 
in fact works and there is enough residual cAMP to activate xylose genes in these strains, 
changes in CCR behavior with sugar level yet more difficult to explain. Repression (low cAMP) 
at high sugar level and derepression (high cAMP) at low sugar level occurs in wild type, but the 
threshold for glucose is around 0.3 mM [Microbiology-(UK). 1997 143, 1909-1918]. This is 
much lower than both glucose levels studied (11 and 28 mM). There should not be a transition 
between high and low cAMP levels within these ranges of extracellular glucose.  

Considering only xylose consumption at 5 g/L, if xylose were a class I compound 
(subject to inducer exclusion), the CCR behavior of ΔptsG, ΔptsI, ΔptsH, and ΔptsHIcrr would 
actually make sense. ΔptsG consumes xylose, due to the same arguments as before. ΔptsI and 
ΔptsH do not consume xylose because IIAglc would mostly be in unphosphorylated state, and 
therefore exerts inducer exclusion on xylose. Inducer exclusion is abolished in ΔptsHIcrr 
(lacking IIAglc), and therefore xylose consumption is resumed. However, xylose is not a class I 
compound and thus the rationale does not apply. 

There is a slight complication with the ΔptsH mutation. Because ptsH is a small gene 
(258 bp), the primer design was so difficult that although a significant portion of the gene was 
deleted, the active site (His-15) was remaining. However, the ΔptsI mutant bears successful 
deletion of the His-189 active site and exhibits similar CCR behavior, assuring that deactivation 
in ptsH in the ΔptsH mutation was in fact successful. 

The sugar consumption behavior of ΔptsI, ΔptsH, and ΔptsHIcrr does not agree with 
literature. It may be necessary to repeat the mutation verification to make sure that the strains 
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bear the correct genotype. Also, measurement of intracellular cAMP levels will provide a direct 
clue for assessment of CCR phenotype. 
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Figure 4. Growth and sugar consumption profiles of ΔptsH, ΔptsI, and ΔptsHIcrr. ΔptsH and 
ΔptsI mutants exhibit unexpected behavior in that xylose utilization is not repressed at low sugar 
level, but repressed at high sugar level, which results in a diauxie. This CCR phenotype is not 
evident in the DptsHIcrr mutant. 



R. Gonzalez, J.V. Shanks, and K-Y. San; May 2005 

 17 

 

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10 15 20 25 30 35 40 45

Time (h)

C
o

n
c
e
n

tr
a
ti

o
n

 (
g

/L
)

0.0

0.5

1.0

1.5

2.0

2.5

O
D

 @
 5

5
0
 n

m

 Glucose

 Xylose

 Cell growth

 
Δmlc, 2 g/L glucose + 2 g/L xylose 

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45

Time (h)

C
o

n
c
e
n

tr
a
ti

o
n

 (
g

/L
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

O
D

 @
 5

5
0
 n

m

 Glucose

 Xylose

 Cell growth

 
Δmlc, 5 g/L glucose + 5 g/L xylose 

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10 15 20 25 30 35 40 45

Time (h)

C
o

n
c
e
n

tr
a
ti

o
n

 (
g

/L
)

0.0

0.5

1.0

1.5

2.0

2.5

O
D

 @
 5

5
0
 n

m
 Glucose

 Xylose

 Cell growth

 
Δcra, 2 g/L glucose + 2 g/L xylose 

 

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45

Time (h)

C
o

n
c
e
n

tr
a
ti

o
n

 (
g

/L
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

O
D

 @
 5

5
0
 n

m

 Glucose

 Xylose

 Cell growth

 
Δcra, 5 g/L glucose + 5 g/L xylose 

Figure 5. Growth and sugar consumption profiles of Δmlc and Δcra. 

Growth and sugar consumption profiles for Δmlc and Δcra are shown in Figure 5. Both 
strains exhibit CCR at low and high sugar levels. Mlc is a transcriptional repressor of ptsG, so 
Δmlc mutation will result in upregulation of IICBglc expression, which translates to higher 
dephosphorylation of IIAglc, low cAMP, and therefore CCR. The second phase of the diauxic 
growth is not apparent in Δmlc at high sugar, because xylose transport is apparently impaired. 
This could be caused by the repressive effect of constitutive ptsG expression as discussed above, 
although the phenotype may be leaky. Out of four trials, two cultures exhibit this behavior, but 
two exhibit normal behavior with second diauxic growth phase and complete xylose 
consumption. Cra regulates downstream carbon utilization by acting as transcriptional activator 
of gluconeogenic genes and repressor of fermentative genes. A Δcra mutation therefore would 
result in upregulation of fermentative pathways. This change does not seem to affect CCR 
behavior though, because the phenotype is essentially that of wild type. 
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Specific Aim 3. Evaluate changes in the regulation of gene expression at genomic scale 
resulting from engineering E. coli SURS using DNA microarray technology. 
 
Transcriptional profiling of ΔptsG vs. W3110 

The use of DNA microarray offers a system-wide view into the transcriptional profile of 
the cell. Characterization of PTS mutants with DNA microarray may highlight some important 
changes arising from pleiotropic effects. Knowledge gained from the transcriptional analysis will 
serve as a feedback in the overall metabolic engineering strategy. As a start, comparison of 
ΔptsG vs. W3110 is chosen because of the obvious difference in the CCR phenotypes. 

Total RNA extraction from ΔptsG and W3110 cells yielded good quality RNA; A260/280 

values were 2.1 for both samples. Figure 6 shows the gel electrophoresis image of the samples, 
with sharp bands for the 15S and 23S RNA. Figure 7 shows the overlay image of Cy3 and Cy5 
channels for array set 1. 

 

 
Figure 6. Gel electrophoresis image of total RNA samples 

 
Upregulation of xylose-related genes is evident in ΔptsG vs. W3110 (Table 6). The two 

array sets serve as two data points of log2-transformed ratios, from which the mean, standard 
deviation, and coefficient of variation can be calculated. The mean fold change is calculated as 
2µ. Although xylose transport and degradation genes are significantly upregulated, the genes for 
the non-oxidative branch of pentose phosphate pathway further downstream of xylose 
metabolism (rpe, rpiA, rpiB, talA, talB, tktA, tktB) are not. They are either only slightly 
upregulated (fold change < 2), have opposing signs in set 1 and 2, or even slightly 
downregulated.  
 
 

ΔptsG W3110 RNA 
markers 
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Figure 7. Overlay image of � ptsG (Cy5) and W3110 (Cy3) channels for array set 1 
 

 
Table 6. Upregulation of xylose genes in ΔptsG vs. W3110 

Gene Description Set 1  
(log2) 

Set 2  
(log2) 

µ  
(log2) 

σ σ/µ Mean Fold 
change 

xylA D-xylose isomerase 4.430 4.654 4.542 0.158 0.03 23.3 

xylB xylulokinase 2.925 3.003 2.964 0.055 0.02 7.8 

xylE xylose-proton symport 5.613 4.826 5.219 0.557 0.11 37.3 

xylF xylose binding protein 
transport system 5.602 5.556 5.579 0.032 0.01 47.8 

xylG putative ATP-binding protein 
of xylose transport system 4.822 5.301 5.062 0.339 0.07 33.4 

xylH putative xylose transport, 
membrane component 4.908 4.774 4.841 0.095 0.02 28.7 

xylR putative regulator of xyl 
operon 4.733 3.534 4.134 0.848 0.21 17.6 
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Gonzalez et al. reported a similar unresponsive transcriptional behavior for an 
ethanologenic E. coli strain [Biotechnol. Prog. 2002, 18, 6-20]. During growth on xylose vs. 
glucose, carbon flux through PPP increased, but the associated transcripts did not show 
significant upregulation. From the literature, it looks like transcriptional regulation of the PPP 
genes in E.coli has not been studied extensively. However, our data suggests that CRP-cAMP 
mediated regulation is decoupled from transcriptional regulation in PPP, i.e., PPP genes do not 
belong to CRP-cAMP regulon. 

Interestingly, flagellar biosynthesis genes are greatly downregulated in ΔptsG vs. W3110 
(Table 7). It has been reported that acetyl phosphate, the intermediate in AcCoA – acetate 
conversion is a signaling molecule in flagellar biosynthesis / biofilm development (acetyl 
phosphate downregulates expression of flagellar genes) [J. Bacteriol. 1995, 177, 4696-4702]. 
However, genes for the first and second step in the AcCoA  acetyl phosphate  acetate 
reaction (pta and ack) are both downregulated to the same extent (-2.1 and -2.0), so it is hard to 
infer something about the accumulation of acetyl phosphate in ΔptsG. Nevertheless, our data 
suggests an interesting link between CCR and flagellar biosynthesis, and serves as an example of 
how a single mutation can lead to system-wide effects, including seemingly unrelated cellular 
functions. 
 
Table 7. Downregulation of flagellar genes in ΔptsG vs. W3110. 
 Gene Mean fold change  Gene Mean fold change  Gene Mean fold change  
 flgA -11.4  flgK -6.3  fliH -2.7  
 flgC -47.4  flgL -2.6  fliI -1.6  
 flgD -21.3  flgM -4.6  fliJ -14.4  
 flgE -21.9  flhB -2.3  fliK -5.8  
 flgF -4.9  fliA -57.2  fliL -8.6  
 flgG -10.6  fliD -3.7  fliM -26.9  
 flgH -5.8  fliE -10.6  fliN -18.6  
 flgI -4.0  fliF -7.3  fliO -9.8  
 flgJ -7.8  fliG -1.9  fliQ -3.9  
 flhD -1.1  flhC -1.3  fliS -16.6  

 
 
Specific Aim 4. Identify functional metabolic pathways and quantify their fluxes in SURS 
mutants and wild type strains by using a novel flux analysis technique based on bondomer 
analysis of 2D NMR bond-labeling experiments. 

The activities and findings relevant to this Specific Aim are presented in three parts as 
follows: (1) E. coli reaction network development, (2) Calculation of metabolic fluxes using 
conventional Metabolic Flux Analysis (c-MFA), and (3) Labeling experiment and analysis of 
isotopomer distribution. Our initial efforts (and therefore the results presented here) focused on 
the implementation of the method for wild-type W3110 during growth on glucose as the only 
sugar (carbon and energy source). 
  
E. coli reaction network development  
 For purpose of developing the bioreaction network model of fermentative metabolism in 
E. coli, several sources were referred and all the metabolic reactions were considered which are 
known to be active under anaerobic conditions. The use of minimum media necessitates 
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considering biosynthetic reaction since the sugar (glucose or xylose) is the sole source of 
biosynthetic carbon. Thus, the aim was to develop the comprehensive reaction network model 
including all the known biosynthetic reactions for building blocks in addition to the central 
metabolic pathways. The model thus developed contained 273 reactions (central metabolic 
pathways, biosynthetic pathways, transport reactions) and 242 metabolites (substrates, 
intermediates, cofactors and products). The biosynthetic reactions consisted of reactions for 
synthesis of the building blocks and after that average macromolecule composition of building 
blocks were taken from literature. A maintenance reaction was included whose flux would be 
able to tell how much ATP is consumed for general maintenance of cell. In addition to these 
reactions, transhydrogenase reaction was also included in the model. Using this model, a 
stoichiometric matrix was developed, by taking balances around intermediate metabolites, for the 
purpose of flux calculation via conventional flux analysis. In addition to the balances on 
intermediate metabolites, balances were taken for certain reducing and energy cofactors (NADH, 
NADPH and ATP). However, the model ran into the problem of having several linearly 
dependent reactions. Several reactions were lumped and some of the metabolites (of similar 
function) were pooled in order to remove the linearly dependent reaction. The resulting model 
consisted of 222 reactions and 205 metabolites. This model met the criteria of linearly 
independent reactions for c-MFA. However, usage of this model for flux calculation led to 
practically unrealizable fluxes (negative fluxes for irreversible reactions). Due to complexity of 
the model, it was difficult to analyze the problem. However, it was found that the stoichiometric 
matrix had a condition number (degree of precision required for the measurements) of 1037 
which is very high for the fermentation measurements. It is stated by Stephanopoulos et. al. 
[“Metabolic Engineering: principles and methodology.” Academic Press, California, 1998] that 
if the condition number is above 100, the matrix is ill-conditioned for flux calculations using 
extracellular measurements. Thus, the approach to solve this problem was to further reduce the 
model by lumping the biosynthetic reactions. This was done by taking single step reactions from 
precursor metabolites to the building blocks, the model for this being constructed from 
information available in literature. The stoichiometric matrix constructed for this model had a 
condition number of 73 and thus it seemed to be a reasonable model to work with. This model 
had 82 reactions and 68 metabolites and the reaction network for this model is listed in appendix 
A. To test this model, a synthetic data (manually generated data which had good carbon and 
redox balance) was used for flux calculation and the resulting fluxes had a good carbon closure 
(error <0.1%) verifying validity of the model.  

The model developed for purpose of flux calculation via c-MFA could not be used as such 
for the purpose of n-MFA because:  

• For reversible reactions, c-MFA model considered net forward reaction.  
• The c-MFA model did not include information for carbon-carbon rearrangement 

information.  
A new model was developed by incorporating these information into the c-MFA model and 

verified by calculating fluxes from synthetic data and the carbon balance closure for resulting 
fluxes was found to be good (<1%). Also, flux identifiablity analysis was done for this model 
and it was found that the fluxes were identifiable.  
 
Calculation of metabolic fluxes using conventional Metabolic Flux Analysis (c-MFA) 

The HPLC data generated by analysis of fermentation samples needs to be transformed 
into fluxes in order to use it as an input for intracellular flux calculation. While evaluating 
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different methods to calculate fluxes from the fermentation data, it was found that the fluxes 
were constant during the exponential phase as depicted in Fig. 8. This shows that cells grow in a 
state of balanced growth during the exponential phase and flux calculation at any point during 
the exponential phase should yield essentially the same result. However, due to errors associated 
with rate calculations at a point, it is advisable to calculate the fluxes for a duration in which 
there is significant change in the concentration of various products. Another aspect developed in 
regard to extracellular flux calculation was to divide the rate of formation of product/ 
consumption of substrate by time-averaged cell density instead of average cell density. Also, for 
the purpose of rate calculations, Figure 8 shows that method using a polynomial fit for 
concentration profile is as good as taking linear profile during exponential phase.  

The extracellular and biosynthetic fluxes calculated from product concentration profiles 
and cell growth profiles were used to calculate the intracellular fluxes, which are shown in 
Figure 9. Among the most relevant features of this flux map are the very low flux through the 
Pentose Phosphate Pathway (PPP), the activity of the enzyme pyruvate dehydrogenase (PDH), 
and the activity of the transhydrogenases (interconverting NAD(H) and NADP(H)).   

 
 
Figure 8. Fluxes at different time points during exponential phase. The fluxes denoted by blue 
symbols are calculated by considering linear profile. The fluxes represented by red symbols are 
calculated by fitting the profile into a polynomial equation and getting an analytical solution. 
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Figure 9. Metabolic flux distribution in E. coli W3110 during the anaerobic fermentation of 
glucose in minimum medium. Units are mmoles of substrate/g cell/h. 
 
Labeling experiment and analysis of isotopomer distribution  

To gain further evidence regarding the observed distribution of metabolic fluxes, due to 
the power of NMR to elucidate internal fluxes to a high degree of resolution and accuracy as 
compared to conventional methods (c-MFA),  a fermentation was performed with uniformly 
labeled 

13
C glucose. Cell biomass was harvested during exponential phase, hydrolyzed and 

analyzed for the labeling pattern of amino acids via 2D HSQC NMR spectroscopy. The spectrum 
obtained from NMR spectroscopy was analyzed by software named “NMR view” and Figure 10 
shows the peak assignment for most of the identifiable peaks. The intensities of these peaks were 
calculated using the same software. For some of the carbon atoms of amino acids, the peaks were 
not well resolved and spectral analysis was done to get the intensities. The intensities were then 
converted to fractional isotopomer distribution.  

Information about carbon-carbon bond connectivities in pyruvate could be obtained from 
six aliphatic carbon positions: α-Ala and α-Val which are derived from C

2 
of pyruvate and, β-

Val, γ
1
-Val, γ

2
-Ile and δ

1
-Leu which are derived from C

3 
of pyruvate. In case of PEP, α-Tyr and 

α-Phe are derived from C
2 

and, β-Tyr and β-Phe are derived from C
3 

of PEP. For these carbon 
positions, ‘f’ values are calculated which give information about carbon-carbon bond 
connectivities [Eur. J. Biochem. 232, 433-448, 1995]. For the terminal carbon, f

(2) 
denotes 

fraction having intact bond with neighboring carbon and f
(1) 

denotes fraction having a 
neighboring carbon arising from different source molecule. For central carbon, f

(3) 
denotes 
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fraction with both neighbors intact, f
(2a) 

denotes fraction with intact neighboring carbon showing 
smaller scalar coupling, f

(2b) 
denotes fraction with intact neighbor showing larger scalar coupling 

and f
(1) 

denotes fraction having both neighbors originating from different source molecule. The 
analytical method to calculate these fractions was developed by Szyperski [Eur. J. Biochem. 232, 
433-448, 1995]. Looking at the f

(2) 
values of terminal carbon atoms in Table 8, it could be seen 

that the fraction of intact C2-C3 carbon bonds is very high (close to 1) implying that these bonds 
were not broken via PPP. This implies low flux through PPP, although it is not a conclusive 
evidence. The f

(3) 
fraction of α-Ala, is 0.28 and its comparison to the conservation of C3-C2 

connectivity implies that there is a significant cleavage of C1-C2 bond in pyruvate. Pyruvate is 
derived form PEP and thus it is important to investigate C1-C2 connectivity in PEP. From the ‘f’ 
values of α-Tyr and α-Phe, it could be calculated the 95% of C1-C2 connectivity in PEP is 
conserved, thus providing evidence that most of the PEP and Pyruvate originate from single 
source glucose. This suggests that the flux through PPP is very low as compared to the flux 
through EMP and that the cleavage of C1-C2 connectivity in pyruvate is due to the action of 
pyruvate formate lyase which is similar to that found by Szyperski [Eur. J. Biochem. 232, 433-
448, 1995]. Also, since conversion of PEP to pyruvate is reversible, even the small amount of 
C1-C2 bond cleavage is not entirely due to action of PPP, thereby suggesting that flux through 
PPP is very low. This finding supports our c-MFA result that flux through PPP is very low as 
compared to flux through EMP in the wild type W3110.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. 2D HSQC NMR spectrum of the hydrolyzed sample for W3110. Each spot represent 
the peak for one carbon atom of an amino acid. The spot for Ala-b is blown up in the inset to 
demonstrate the peaks.  
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Table 8. Relative intensities of 
13

C multiplet components and derived relative abundances of 

intact C
2 
and C

3 
fragments in amino acids.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

NMR-based Metabolic Flux Analysis (NMR-MFA) 

The intracellular fluxes were solved by minimizing the deviation between real and 

simulated data. Extra cellular fluxes of Ethanol/Acetate and formate and all available 

measurements of relative multiplet intensities were used in the formulation of error criterion. The 

objective function to be minimized was defined as  

                                            
2

2

2

exp

2

exp )()(

N

FF

N

II
squareChi simmessim !

+
!

=!  

There are 41 net reactions rates and 13 exchange rates i.e. total of 54 parameters to be 

estimated. 22 intracellular metabolite pools contribute linear constraint and L=17 extra cellular 

fluxes are directly measured but two of them (Formate and Acetate/Ethanol) are not used. Hence, 

labeling data have to supply the information for the remaining 54-15-22=17 degree of freedom. 

TCA cycle, Pentose and Glyoxalytae fluxes were taken as free fluxes.  

NMR2Flux which uses Simulated Annealing (SA) with Powell method to find global 

optimum was used to estimate the intracellular fluxes. 
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Figure 11. Comparison of experimental and simulated  NMR intensities of amino acids  for 1st 
experiment. 
 

Figure 11 shows the simulated and experimental intensities. Figure 12 shows a metabolic 

flux map of two  labeling experiments. Pentose flux was found to be 4.48 and 12. Table 9 lists 

literature value for pentose fluxes in E. coli under anaerobic condition 

Table 9 

Strain Source Value 

JM101 Uwe Sauer 1999 J bact less 25

E.coli B Neilsen ,1999,J.Biotech 77

K-12 W3110 cMFA 0.003

Pentose Flux 

 
It has been reported that flux through TCA cycle(suc) to be small under anaerobic 

condition. Similarly, Glyoxalyate shunt flux is expected to be small under anaerobic condition 
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Figure 12. Metabolic Flux Map for two labeling experiment 

 

NADH, NADPH and ATP Balances  

Table 10: 1st Experiment  

Net Formed  Required for Biomass synthesis Balance

NADH 23.35 8.5 14.85

NADPH 11.54 43.68 -32.14

ATP 169.45 44.31 125.14  
NADH and NADPH balance were found to be not closed. Even NADH+NADPH balance 

is not closed. This suggests pdh may be active. If flux thorough fdh is assumed to be zero, and 

pdh is assumed to be active, flux through pdh is 13.44. ATP maintenance was found to be 125 

compared to 153 in the conventional MFA. 
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Identifiability  

Table 11 shows pentose and TCA fluxes estimated by the NMFA without extracellular 

measurement, CMFA and NMFA with extra cellular fluxes. Clearly, amino acids intensities 

without extra cellular measurements are not sufficient to estimate metabolic fluxes. 

Table 11 

CMFA NMFA+extra cellular NMFA w ithout extra cellular measurement

Pentose 2.5  -  12 3.85  -   6.4 0  -  50

TCA 0  -  0 0  -  50

Glyoxylate 1.13   - 1.78 0   -  2.6  
Simulations were done to find whether fluxes indentifiablity can be improved in case 

when extra cellular fluxes are not available or they are associated with large error. Figure 13 

shows the result.  The maximum improvement (2 times) was found to be for 100% 1- labeled 

glucose. To verify these results, synthetic intensities were used as experimental intensities and 

NMR2Flux was used to estimate fluxes.  Mixture of 10% U-labeled and 50% 1-labeled was able 

to estimate fluxes correctly whereas 10%  U –labeled and 20%  1-labeled was not able to do so.  

 

Figure 13: Optimal Experiment design for E. coli grown on mixture of 1-labeled and U-labeled 
Glucose 
 
 

With the mixture of 1-labeled and U-labeled glucose, mez and ED pathway fluxes are 

identifiable which not the case is in the U-labeled experiment 
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Figure 14: The algorithm used to verify the identifiability results. 

 

Specific Aim 5. Integrate these results using a novel genetic network based MFA model 
that combines gene expression and metabolic flux data. 

 
We are developing a framework for the development of an algorithm that is capable of 

capturing the inner working of sugar-utilization regulatory systems in response to the availability 
of various carbon sources. We are currently embarking in two major efforts: 

1. In the first project, we are constructing a mechanistic based model to describe the 
xylose utilization system under the control of a global transcription factor Crp.  As a 
result, the gene expression and enzymatic levels of those genes related to xylose 
uptake and utilization will be regulated by Crp. 

2. Concurrently, we are constructing a mechanistic based glucose utilization model 
which involves several regulatory molecules, such as cAMP, Mlc, and Crp.  

 
An important feature of this modeling approach is that the output from the glucose 

utilization model will provide pertinent information about the transcription factor Crp which will 
in turns regulates the xylose utilization system.  We expect that the model will be able to 
describe the dynamics of simultaneous presence of both carbon sources once the two sub-models 
are integrated together. The current model structure was built on exist knowledge about the 
regulatory mechanisms of the glucose and xylose systems. The parameter values used in the 
model are based on data reported in the literature.   
 
Results on two additional problems studied in this project: (a) HPLC optimization and    
(b) characterization of the hybridization process in DNA microarray using molecular 
dynamics simulation  
 
(a) Computer-assisted optimization of HPLC separation for simultaneous quantification of 
substrates and products in microbial fermentation 

Generate Amino Acids Multiplet Intensities for 
the mixture of labeled glucose for the flux estimated by 

CMFA  

Flux estimated by CMFA or 
NMFA 

Use Intensities generated 
as 

 Experimental Intensities 

Use NMR2Flux to estimate Flux 
And compare with Fluxes in step 

1 
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Monitoring of E. coli fermentation requires quantification of substrates and products in the 
culture medium. Simultaneous separation, identification, and quantification of medium 
components by HPLC provide a fast and convenient assay, but is not always possible due to peak 
overlaps. This problem can be solved by optimizing the operating conditions to achieve the best 
peak separation. HPLC optimization strategy consists of four elements; experimental design, 
retention modeling, quality criteria function, and optimum search method. In this part of the 
work we present a simple, superior alternative to general classes of classical resolution functions 
(S function) and a novel optimum search algorithm (ISS, iterative stochastic search) for HPLC 
optimization.  

The alternative global resolution function S for HPLC optimization proposed in this work 
shows superior performance when compared to general classes of quality criteria functions (Rs, 
Rp, Rmin), including correct assessment of favorable separation conditions, preservation of 
individual peak pair contributions, elimination of arbitrary cut-off values, and a unique capability 
to interpret absolute significance of function values through a simple inequality. The novel 
global optimization algorithm (iterative stochastic search, ISS) also developed in this work 
shows clear advantages over existing algorithms for HPLC optimization (grid search, simplex 
search, simulated annealing) in its ability to correctly identify the global optimum (instead of 
local optimum), with higher precision, with more efficient use of computation cycles, and with 
easier implementation. Based on a case study using a hyperdimensional function with many 
optima, robust performance of ISS also suggests its possible application in simultaneous, higher-
dimensional HPLC optimizations. Successful application of S and ISS to HPLC optimization 
was demonstrated in the separation of ten representative substrates and products found in 
microbial fermentation. Excellent agreement was found between actual and predicted values for 
the optimized (best) and pathological (worst) conditions. The overall optimization strategy 
successfully implemented in this work can be generalized to any HPLC optimization problem. 
For future work, the retention model will be expanded to include more compounds related to E. 
coli fermentation: lactose, isocitrate, 2,3-butanediol, propionic acid, butyric acid, and MOPS, and 
the OPTIMIZE software will be updated. 
 
(b) Mesoscopic simulation of the hybridization process in oligonucleotide microarray by 
molecular dynamics 

DNA microarray is established as a powerful tool in global genomic analysis. However, the 
hybridization process, in which target cDNA molecules specifically bind to their complementary 
probes on the array, is still largely uncharacterized. We conducted a molecular dynamics 
simulation of the hybridization of small oligonucleotide target and probes (8 bases), using a 
simple bead and spring model to represent the DNA molecules, and an implicit treatment of the 
solvent (water) using a distance-dependent dielectric function. A score function is defined to 
monitor the extent of hybridization of target molecules during simulation. To compensate for the 
lack of dihedral orientation in the beads, an algorithm is implemented to ensure that hydrogen 
bonding occurs in one-to-one correspondence. The significance of the simple model in designing 
oligonucleotide probes is discussed, and many improvements to the model are proposed.  

With the motivation of characterizing the hybridization process in a microarray 
experiment, the model can be applied particularly to the design of oligonucleotides in 
microarrays. Currently, the oligos are designed through a bioinformatics search to find the most 
unique patterns in the genes of interest. A fast, row-resolution simulation such as the one 
described in this work could be utilized as a validation tool. 
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Many simplifications are used in the present model, but improvements are forthcoming. 
Easy modifications can readily make the model more realistic. The restriction that prevents H-
bonds formation within the same molecule can easily be lifted. Also, higher bond-energy in G-C 
base pairs can be described in the model by insertion of a few lines in the code. The Berendsen 
thermostat [J. Chem. Phys. 1984, 81, 3684-3690] has been used in many MD simulations of 
DNA, and the implementation is simple enough to be incorporated in the model with minimal 
modification. 

For a more realistic representation of the oligonuleotides, it is crucial that the model be 
reworked using real units. Levitt et al. [Comput. Phys. Comm. 1995, 91, 215-231] tabulated 
model parameter values for bond length, stretching, as well as bond and dihedral angles for MD 
simulations of DNA. Although these values are reported at the atomic resolution, approximation 
for the bead model can be made considering the C4’-C5’-PO4-C3’ connection along the 
backbone of the oligonucleotides. Finally, a larger system (both in oligo size and number probe 
and target molecules) should be studied to more accurately capture the kinetic behavior of the 
system. 

 
 
6. Identify products developed under the award and technology transfer activities, such as: 
 
a.   Publications (list journal name, volume, issue), conference papers, or other public 
releases of results.   If not provided previously, attach or send copies of any public releases 
to the DOE Project Officer identified in Block 11 of the Notice of Financial Assistance 
Award; 
 
The reported work has been featured in the following presentations and papers: 
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• Dharmadi, Y., and R. Gonzalez. (2005). A Better Global Resolution Function and a Novel 
Iterative Stochastic Search Method for Optimization of HPLC Separation. J. Chromatogr. 
A 1070: 89-101 

• Dharmadi, Y., and R. Gonzalez. (2004). DNA Microarrays: Experimental Issues, Data 
Analysis, and Application to Bacterial Systems. Biotechnol. Prog. 20 (5): 1309-1324. 

 
Presentations:  
Invited Presentations 

• Understanding and Manipulating the Anaerobic Metabolism of E. coli: A Systems Biology 
Approach. Presented at: (1) Ninth Annual Symposium on Industrial and Fermentation 
Microbiology, Friday, April 29, 2005. The Radisson Center, La Crosse, WI; (2) 
Innovations at the Interface of Polymers and Biology Symposium, Polytechnic University, 
New York, May 10-12, 2005; and (3) Department of Veterinary Microbiology and 
Preventive Medicine, Iowa Sate University, December 7, 2004. 

Contributed Presentations 
• Dharmadi,Y., and Gonzalez, R. A network decomposition framework for integration of 

knowledge on regulatory networks in biological systems. AIChE 2005 Annual Meeting, 
October 30-November 4, Cincinnati, OH. 



R. Gonzalez, J.V. Shanks, and K-Y. San; May 2005 

 32 

• Dharmadi,Y., and Gonzalez, R. Computer-assisted optimization of HPLC separation for 
simultaneous quantification of substrates and products in microbial fermentation. AIChE 
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b.   Web site or other Internet sites that reflect the results of this project; 
 
None. 
 
c.    Networks or collaborations fostered; 
 
None. 
  
d.         Other products, such as data or databases, physical collections, audio or video, 
software or netware, models, educational aid or curricula, instruments or equipment. 
 
NMR2Flux software has been developed by Dr. Shanks group to estimate the metabolic fluxes in 
plants. The original program was specific to the plant system (developing soybean   embryos). 
Hence, it cannot be used for the E. coli system without modification. The program has been 
modified so that it can be used for any organism without any changes. The user has to just 
provide the program with metabolic network model of the organism in the form of input files 
along with experimental conditions and data. 
 
7.   For projects involving computer modeling, provide the following information with the 
final report: 
 
  In recent years, metabolic flux analysis (MFA) has become an important tool in 
metabolic engineering. The results of MFA are metabolic flux maps which can be used for the  
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systematic study of cellular responses to genetic perturbations. In some cases, however, 
intracellular metabolic fluxes can be estimated by doing balance for intracellular metabolites, 
and solving the resulting set of linear equations. This is called stoichiometric flux analysis or 
conventional flux analysis. The stoichiometric flux analysis fails in the case of parallel reactions 
and metabolic cycles.  In such cases, 13C labeling based MFA can be used to estimate fluxes. 

The key assumptions of 13C based MFA are that the organism does not distinguish 
between 12C and 13C labeled substrate and it is at metabolic and isotopic steady state i.e   
intracellular metabolite concentration and its isotopic distribution does not change with time. In 
such an experiment, a mixture of 12C and 13C  substrate is fed to the biological system. The 
labeled carbon atoms are then distributed all over the metabolic network Finally the isotopic 
distribution in the amino acids pools can be measured by NMR or MS instruments. The resulting 
data provide a large amount of additional information to quantify the intracellular fluxes.  

 
a.   Model description, key assumptions, version, source and intended use; 
 

The calculation of metabolic fluxes from labeling data requires a model of the metabolic 
network. The metabolic model for E.coli under anaerobic condition has been developed is shown 
in Figure 1.  It includes all principal pathways of primary metabolism (PTS transport of glucose, 
glycolysis, pentose phosphate pathway, TCA cycle, glyoxylate shunt, and fermentative reactions) 
and the biosynthetic pathways that convert primary metabolic precursors to sink metabolites (not 
shown). The TCA cycle is not complete under anaerobic conditions but has been assumed 
complete to make the model comprehensive and account for the effect of leftover oxygen 
present.  

The reactions in the model were assumed reversible unless information on irreversibility 
was available. All reversible reactions were modeled as two fluxes. The reaction from succinate 
to malate (Mal) in the TCA cycle can lead to an inversion of the labeling pattern, owing to the 

fact that succinate is a symmetrical molecule while Mal is not . To account for this fact, this 
reaction was modeled as two parallel fluxes, one that conserves the carbon skeleton and another 
that inverts the same. The few reactions have been lumped to reduce the computation time.   
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Figure 1: Metabolic Network model for E.coli under anaerobic condition 

 
The key assumption of the model is that it accounts for the reactions active in the central 

carbon metabolism under the experimental conditions and also accounts for the carbon 
rearrangements due to these reactions. The model can be used for evaluating intracellular fluxes 
for E. coli under anaerobic conditions. 
 The sources of information for the primary metabolic and biosynthetic pathways in the 
model were the recent literature on E. coli biochemistry (Neidhardt et al, 2005; Szyperski, 1995) 
and the online source Ecocyc (Keseler et al,2005). These sources also provided information on 
the precursors of the sink metabolites and carbon rearrangement.  
  
 b.   Performance criteria for the model related to the intended use; 
NMR2Flux requires the model to evaluate the fluxes for simulating the labeling experiment. The 
model has to account for the observed labeling data and there has to be good fit between the 
experimental and simulated data. 
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c. Test results to demonstrate the model performance criteria were met (e.g., code 
verification/validation, sensitivity analyses, history matching with lab or field data, as 
appropriate); 

The model has been used to estimate fluxes for the experiment data reported by Szyperski 
(1995) and there was a good fit between experimental and simulated data. Schmidt et al (1999) 
used same experimental data to estimate the metabolic fluxes. However, our flux map was a little 
different from those obtained by them and we had a more optimal chi-squared value – this 
difference can be attributed to difference in the algorithm used. 

A 13C labeling experiment was performed with wild type E.coli K-12 (w3110) under 
anaerobic conditions with a mixture of naturally labeled and 10% 13C U-labeled glucose. The 
model developed has been used to estimate metabolic fluxes. There was a good agreement 
between experimental and simulated data, as  shown in Figure. 

y = 0.9932x + 0.002

R
2
 = 0.9937

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Experimental Intensity

S
im

u
la

te
d

 I
n

te
n

s
it

y

 
Figure 2 :Comparison of experimental and simulated  NMR intensities of amino acids 

 
 
d.   Theory behind the model, expressed in non-mathematical terms; 
The model consists of central carbon metabolism reactions and biosynthetic pathways 

leading to biomass formation. It is assumed that model accounts for all reactions active in the 
central carbon metabolism under the experimental conditions and can be used to simulate the 
carbon labeling experiment.  
 
e.   Mathematics to be used, including formulas and calculation methods; 

The relationship between labeling data and metabolic fluxes is non-linear. Thus, fluxes 
are estimated in iterative method. The intracellular fluxes are assumed and  carbon labeling 
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experiment is simulated using  (cumulative) isotopomer balances for the fluxes. The set of 
guessed fluxes which give the best estimate of simulated intensities are taken as true fluxes. 
NMR2Flux uses optimization algorithm (Simulated annealing and Powell method) to minimize 
the chi-square, the deviation between the simulated and experimental data. Finally, Monte Carlo 
simulation is done to obtain statistical distribution of fluxes. 
 
f.    Whether or not the theory and mathematical algorithms were peer reviewed, 
and, if so, include a summary of theoretical strengths and weaknesses; 
 
The tool NMR2Flux has been used to estimate metabolic fluxes in the plant system and the 
algorithm has been published in the Plant Physiology (Sriram et al, 2004). 

NMR2Flux uses innovative techniques like “boolean function mapping” which makes the 
algorithm faster. It uses cumulative isotopomer balances  which make it accurate.  The algorithm 
is computationally intensive and it is challenging to develop metabolic network model that gives 
good fit of simulated and experimental labeling intensities. The algorithm cannot evaluate fluxes 
without extracellular measurements and it true for all 13C based MFA estimation algorithms.   

 
g.   Hardware requirements; and 
 
The computer program, NMR2Flux, is implemented in the programming language C, and can be 
run on computer with the Red Hat Linux operating system with any Pentium/Celeron family or 
compatible processor. 
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