Nepheline Formation Potential in Sludge Batch 4 (SB4) and Its Impact on Durability: Selecting Glasses for a Phase 2 Study

PDF Version Also Available for Download.

Description

The likelihood for the formation of nepheline in Sludge Batch 4 (SB4) glass systems and the potential impact of nepheline on the durability of these systems is part of the frit development efforts for SB4. The effect of crystallization on glass durability is complex and depends on several interrelated factors including the change in residual glass composition, the formation of internal stress or microcracks, and the preferential attack at the glass-crystal interface. Perhaps one of the most significant effects is the type and extent (or fraction) of crystallization and the change to the residual glass composition. A strong increase in ... continued below

Creation Information

Peeler, D August 15, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The likelihood for the formation of nepheline in Sludge Batch 4 (SB4) glass systems and the potential impact of nepheline on the durability of these systems is part of the frit development efforts for SB4. The effect of crystallization on glass durability is complex and depends on several interrelated factors including the change in residual glass composition, the formation of internal stress or microcracks, and the preferential attack at the glass-crystal interface. Perhaps one of the most significant effects is the type and extent (or fraction) of crystallization and the change to the residual glass composition. A strong increase in glass dissolution (or decrease in durability) has been observed in previous studies in glasses that formed aluminum-containing crystals, such as NaAlSiO{sub 4} (nepheline) and LiAlSi{sub 2}O{sub 6}, and crystalline SiO{sub 2}. Although it is well known that the addition of Al{sub 2}O{sub 3} to borosilicate glasses enhances the durability of the waste form (through creation of network-forming tetrahedral Na{sup +}-[AlO{sub 4/2}]{sup -} pairs), the combination of high Al{sub 2}O{sub 3} and Na{sub 2}O can lead to the formation of nepheline (NaAlSiO{sub 4}). Given the projected high concentration of Al{sub 2}O{sub 3} in SB4 and the potential use of a high Na{sub 2}O based frit to improve melt rate and a high Na{sub 2}O sludge due to settling problems, the potential formation of nepheline in various SB4 systems continues to be assessed. The most recent compositional projections from the Closure Business Unit (CBU) for SB4 may be framed around three decision areas: the sodium molarity of the sludge (at values of 1M Na and 1.6M Na), the SB3 heel that will be included in the batch (expressed in inches of SB3 sludge with values of 0, 40, and 127''), and the introduction of an ARP stream into the sludge (which is represented by six options: no ARP, ARPa, ARPe, ARPk, ARPm, and ARPv). Candidate frits are being identified for these options via a paper study approach with the intent of downselecting to a set of key frits whose operating windows (i.e., waste loading intervals that meet Product Composition Control System (PCCS) Measurement Acceptability Region (MAR) criteria) are robust to and/or selectively optimal for these sludge options. The primary or key frits that appear attractive on paper (i.e., down selected via the paper study) will be transferred into SRNL's experimental studies supporting SB4; specifically, the melt-rate studies, chemical process cell flowsheet runs and, if needed, a glass variability study.

Notes

available

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: WSRC-TR-2005-00370
  • Grant Number: DE-AC09-96SR18500
  • DOI: 10.2172/890199 | External Link
  • Office of Scientific & Technical Information Report Number: 890199
  • Archival Resource Key: ark:/67531/metadc875267

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 15, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 2, 2016, 3:43 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Peeler, D. Nepheline Formation Potential in Sludge Batch 4 (SB4) and Its Impact on Durability: Selecting Glasses for a Phase 2 Study, report, August 15, 2005; [Aiken, South Carolina]. (digital.library.unt.edu/ark:/67531/metadc875267/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.