Computation of the Longitudinal Space Charge Effect in Photoinjectors

PDF Version Also Available for Download.

Description

The LCLS Photoinjector produces a 100A, 10 ps long electron bunch which is later compressed down to 230 fs to produce the peak current required for generating SASE radiation. SASE saturation will be reached in the LCLS only if the emittance and uncorrelated energy spread remain respectively below 1.2 mm.mrad and 5.10{sup -4}. This high beam quality will not be met if the Longitudinal Space Charge (LSC) instability develops in the injector and gets amplified in the compressors. The LSC instability originates in the injector beamline, from an initial modulation on top of the photoelectron pulse leaving the cathode. Numerical ... continued below

Physical Description

3 pages

Creation Information

Emma, P.; Huang, Z.; Limborg-Deprey, C.; Welch, J.J.; Wu, J. & /SLAC May 9, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The LCLS Photoinjector produces a 100A, 10 ps long electron bunch which is later compressed down to 230 fs to produce the peak current required for generating SASE radiation. SASE saturation will be reached in the LCLS only if the emittance and uncorrelated energy spread remain respectively below 1.2 mm.mrad and 5.10{sup -4}. This high beam quality will not be met if the Longitudinal Space Charge (LSC) instability develops in the injector and gets amplified in the compressors. The LSC instability originates in the injector beamline, from an initial modulation on top of the photoelectron pulse leaving the cathode. Numerical computations, performed with Multiparticle Space Charge tracking codes, showing the evolution of the longitudinal phase space along the LCLS injector beamline, are discussed. Their results are compared with those deduced from theoretical models in different regimes of energy and acceleration and for different modulation wavelengths. This study justifies the necessity to insert a ''laser heater'' in the LCLS Photoinjector beamline.

Physical Description

3 pages

Source

  • Presented at the 9th European Particle Accelerator Conference (EPAC 2004), Lucerne, Switzerland, 5-9 Jul 2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-11170
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 890824
  • Archival Resource Key: ark:/67531/metadc875222

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 9, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 6, 2016, 7:54 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Emma, P.; Huang, Z.; Limborg-Deprey, C.; Welch, J.J.; Wu, J. & /SLAC. Computation of the Longitudinal Space Charge Effect in Photoinjectors, article, May 9, 2005; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc875222/: accessed October 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.