Ferromagnetism in Ga1-xMnxP: evidence for inter-Mn exchangemediated bylocalized holes within a detached impurity band

PDF Version Also Available for Download.

Description

We report an energy gap for hole photoexcitation in ferromagnetic Ga{sub 1-x}Mn{sub x}P that is tunable by Mn concentration (x {le} 0.06) and by compensation with Te donors. For x{approx}0.06, electrical transport is dominated by excitation across this gap above the Curie temperature (T{sub c}) of 60 K and by thermally-activated hopping below T{sub c}. Magnetization measurements reveal a moment of 3.9 {+-} 0.4 {micro}{sub B} per substitutional Mn while the large anomalous Hall signal unambiguously demonstrates that the ferromagnetism is carrier-mediated. In aggregate these data indicate that ferromagnetic exchange is mediated by holes localized in a Mn-derived band that ... continued below

Creation Information

Scarpulla, M.A.; Cardozo, B.L.; Farshchi, R.; Hlaing Oo, W.M.; McCluskey, M.D.; Yu, K.M. et al. January 11, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We report an energy gap for hole photoexcitation in ferromagnetic Ga{sub 1-x}Mn{sub x}P that is tunable by Mn concentration (x {le} 0.06) and by compensation with Te donors. For x{approx}0.06, electrical transport is dominated by excitation across this gap above the Curie temperature (T{sub c}) of 60 K and by thermally-activated hopping below T{sub c}. Magnetization measurements reveal a moment of 3.9 {+-} 0.4 {micro}{sub B} per substitutional Mn while the large anomalous Hall signal unambiguously demonstrates that the ferromagnetism is carrier-mediated. In aggregate these data indicate that ferromagnetic exchange is mediated by holes localized in a Mn-derived band that is detached from the valence band.

Source

  • Journal Name: Physical Review Letters; Journal Volume: 95; Journal Issue: 20; Related Information: Journal Publication Date: 11/11/2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--58968
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.1103/PhysRevLett.95.207204 | External Link
  • Office of Scientific & Technical Information Report Number: 885246
  • Archival Resource Key: ark:/67531/metadc875188

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 11, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 16, 2016, 1:07 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Scarpulla, M.A.; Cardozo, B.L.; Farshchi, R.; Hlaing Oo, W.M.; McCluskey, M.D.; Yu, K.M. et al. Ferromagnetism in Ga1-xMnxP: evidence for inter-Mn exchangemediated bylocalized holes within a detached impurity band, article, January 11, 2005; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc875188/: accessed September 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.