The Coupling of the Numerical Heat Transfer Model of the Pauzhetka Hydrothermal System (Kamchatka, USSR) with Hydroisotopic Data

PDF Version Also Available for Download.

Description

The application of the two-dimensional numerical heat-transfer model to the Pauzhetka hydrothermal system allowed us to establish that: (1) a shallow magma body with the anomalous temperature of 700-1000 C and with a volume of 20-30 km{sup 3} may be a heat source for the formation of the Pauzhetka hydrothermal system. (2) The water feeding source of the Pauzhetka hydrothermal system may be meteoric waters which are infiltrated at an average rate of 5-10 kg/s {center_dot} km{sup 2}. The coupling of the numerical heat-transfer model with hydroisotopic data (D,T,{sup 18}O) obtained from the results of testing of exploitation wells, rivers ... continued below

Physical Description

175-181

Creation Information

Kiryukhin, A.V. & Sugrobov, V.M. January 21, 1986.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The application of the two-dimensional numerical heat-transfer model to the Pauzhetka hydrothermal system allowed us to establish that: (1) a shallow magma body with the anomalous temperature of 700-1000 C and with a volume of 20-30 km{sup 3} may be a heat source for the formation of the Pauzhetka hydrothermal system. (2) The water feeding source of the Pauzhetka hydrothermal system may be meteoric waters which are infiltrated at an average rate of 5-10 kg/s {center_dot} km{sup 2}. The coupling of the numerical heat-transfer model with hydroisotopic data (D,T,{sup 18}O) obtained from the results of testing of exploitation wells, rivers and springs is the basis to understand more clearly the position of recharge areas and the structure of water flows in the hydrothermal system.

Physical Description

175-181

Source

  • Proceedings, Eleventh Workshop Geothermal Reservoir Engineering, Stanford University, Stanford, California, January 21-23, 1986

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SGP-TR-93-25
  • Grant Number: AS03-80SF11459
  • Grant Number: AS07-84ID12529
  • Office of Scientific & Technical Information Report Number: 887138
  • Archival Resource Key: ark:/67531/metadc875187

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 21, 1986

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 9, 2016, 3:42 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kiryukhin, A.V. & Sugrobov, V.M. The Coupling of the Numerical Heat Transfer Model of the Pauzhetka Hydrothermal System (Kamchatka, USSR) with Hydroisotopic Data, article, January 21, 1986; United States. (digital.library.unt.edu/ark:/67531/metadc875187/: accessed September 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.