Tunable Diode Laser Sensor for Monitoring and Control of Harsh Combustion Environments

PDF Version Also Available for Download.

Description

This work represents the collaborative effort between American Air Liquide and Physical Sciences, Inc. for developing a sensor based on near-IR tunable diode lasers (TDL). The multi-species capability of the sensor for simultaneous monitoring of CO, O2, and H2O concentration as well as gas temperature is ideal for in-situ monitoring on industrial furnaces. The chemical species targeted are fundamental for controlling the combustion space for improved energy efficiency, reduced pollutants, and improved product quality, when coupling the measurement to a combustion control system. Several add-on modules developed provide flexibility in the system configuration for handling different process monitoring applications. For ... continued below

Physical Description

128 pages (5.9 MB)

Creation Information

VonDrasek, William & Melsio-Pubill, Anna May 30, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 20 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This work represents the collaborative effort between American Air Liquide and Physical Sciences, Inc. for developing a sensor based on near-IR tunable diode lasers (TDL). The multi-species capability of the sensor for simultaneous monitoring of CO, O2, and H2O concentration as well as gas temperature is ideal for in-situ monitoring on industrial furnaces. The chemical species targeted are fundamental for controlling the combustion space for improved energy efficiency, reduced pollutants, and improved product quality, when coupling the measurement to a combustion control system. Several add-on modules developed provide flexibility in the system configuration for handling different process monitoring applications. For example, the on-Demand Power Control system for the 1.5 ?m laser is used for high particle density exhaust streams where laser transmission is problematic. For long-distance signal collection a fiber optic communication system is used to reduce noise pick-up. Finally, hardened modules to withstand high ambient temperatures, immune to EMF interference, protection from flying debris, and interfaced with pathlength control laser beam shielding probes were developed specifically for EAF process monitoring. Demonstration of these different system configurations was conducted on Charter Steel's reheat furnace, Imco Recycling, Inc. (now Aleris International, Inc.) aluminum reverberatory furnace, and Gerdau Ameristeel's EAF. Measurements on the reheat furnace demonstrated zone monitoring with the measurement performed close to the steel billet. Results from the aluminum furnace showed the benefit of measuring in-situ near the bath. In this case, low-level furnace optimization was performed and demonstrated 5% fuel savings. Monitoring tests on the EAF off-gas demonstrated the level of industrialization of the sensor to survive the harsh EAF environment. Long-term testing on the EAF has been on-going for over 6 months with essentially zero maintenance. Validation of the TDL measurement on the EAF was confirmed by comparison with extractive sampling CO measurements.

Physical Description

128 pages (5.9 MB)

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/CH/11030
  • Grant Number: FC36-00CH11030
  • DOI: 10.2172/882872 | External Link
  • Office of Scientific & Technical Information Report Number: 882872
  • Archival Resource Key: ark:/67531/metadc875146

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 30, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Oct. 31, 2016, 6:52 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 20

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

VonDrasek, William & Melsio-Pubill, Anna. Tunable Diode Laser Sensor for Monitoring and Control of Harsh Combustion Environments, report, May 30, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc875146/: accessed December 9, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.