Double-diffusive convection in liquid-dominated geothermal systems with high-salinity brines

PDF Version Also Available for Download.

Description

Variations in temperature and salinity in hypersaline liquid-dominated geothermal systems like the Salton Sea Geothermal System (SSGS) tend to be correlated such that liquid density is relatively constant in the system. The tendency toward small density variations may be due to connectivity with a surrounding regional aquifer at multiple depths in the stratigraphic column. We present numerical simulation results for natural convection in geothermal systems like the SSGS in hydraulic connection with a constant-density aquifer. Natural convection where there are two sources of buoyancy such as heat and salt, with different diffusivities, is called double-diffusive convection. Simulations of double-diffusive convection ... continued below

Physical Description

209-215

Creation Information

Oldenburg, Curtis M.; Pruess, Karsten & Lippmann, Marcelo January 20, 1994.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Variations in temperature and salinity in hypersaline liquid-dominated geothermal systems like the Salton Sea Geothermal System (SSGS) tend to be correlated such that liquid density is relatively constant in the system. The tendency toward small density variations may be due to connectivity with a surrounding regional aquifer at multiple depths in the stratigraphic column. We present numerical simulation results for natural convection in geothermal systems like the SSGS in hydraulic connection with a constant-density aquifer. Natural convection where there are two sources of buoyancy such as heat and salt, with different diffusivities, is called double-diffusive convection. Simulations of double-diffusive convection are carried out using our general-purpose reservoir simulator TOUGH2 with a newly developed twodimensional heat and brine transport module (T2DM) that includes Fickian solute dispersion. The model includes an accurate formulation for liquid density as a function of temperature and salinity. Our simulation results show many features that are consistent with observations of the SSGS, making conceptual models that involve hydraulic connectivity with a surrounding aqulfer appear plausible. The generality of our model makes the results broadly applicable to systems similar to the SSGS.

Physical Description

209-215

Subjects

Source

  • Proceedings, nineteenth workshop on geothermal reservoir engineering, Stanford University, Stanford, CA, January 18-20, 1994

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SGP-TR-147-30
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 889211
  • Archival Resource Key: ark:/67531/metadc875132

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 20, 1994

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Feb. 16, 2017, 7 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Oldenburg, Curtis M.; Pruess, Karsten & Lippmann, Marcelo. Double-diffusive convection in liquid-dominated geothermal systems with high-salinity brines, article, January 20, 1994; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc875132/: accessed October 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.