An accurate formulation of the solubility of Co{sub 2} in water, for geothermal applications

PDF Version Also Available for Download.

Description

The solubility correlations for the H{sub 2}O-CO{sub 2} system applied so far for numerical simulation of geothermal reservoir and well flows are crude. This is due, at least partly, to the significant disagreement existing between the solubility models and results published in the specialized literature. In this work we analyze the reasons underlying this disagreement. On this basis, we propose a thermodynamically correct, and numerically accurate model for the solubility of carbon dioxide in water. Its range of validity is up to 350 C and 500 bar. Our main contributions are: (a) the adoption of an equation of state for ... continued below

Physical Description

231-238

Creation Information

Iglesias, Eduardo R. & Moya, Sara L. January 1, 1992.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The solubility correlations for the H{sub 2}O-CO{sub 2} system applied so far for numerical simulation of geothermal reservoir and well flows are crude. This is due, at least partly, to the significant disagreement existing between the solubility models and results published in the specialized literature. In this work we analyze the reasons underlying this disagreement. On this basis, we propose a thermodynamically correct, and numerically accurate model for the solubility of carbon dioxide in water. Its range of validity is up to 350 C and 500 bar. Our main contributions are: (a) the adoption of an equation of state for the gas phase that realistically accounts for the non-ideal behavior of both components and that of the mixture, within the P-T range considered; and (b) to accurately include the effects of temperature and pressure on the solubility of carbon dioxide in the liquid phase. The proposed model fits the available phase equilibrium data for the H{sub 2}O-CO{sub 2} system nicely. In particular, it does not present the severe conflict between the linearity of the model and the lack of linearity of the data, evident in earlier models. The tight fit obtained with our model indicates that the complexities of H{sub 2}-CO{sub 2} phase equilibrium are well represented by it.

Physical Description

231-238

Source

  • Seventeenth Workshop on Geothermal Reservoir Engineering: Proceedings, Stanford University, Stanford, CA, January 29-31, 1992

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SGP-TR-141-34
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 888732
  • Archival Resource Key: ark:/67531/metadc874869

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1992

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 2, 2016, 7:05 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Iglesias, Eduardo R. & Moya, Sara L. An accurate formulation of the solubility of Co{sub 2} in water, for geothermal applications, article, January 1, 1992; United States. (digital.library.unt.edu/ark:/67531/metadc874869/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.