In-Situ Survival Mechanisms of U and Tc Reducing Bacteria in Contaminated Sediments

PDF Version Also Available for Download.

Description

Desulfovibrio desulfuricans G20 and Shewanella oneidensis MR-1 are model subsurface organisms for studying genes involving in situ radionuclide transformation and sediment survival. Our research objective for this project has been to develop a signature-tagged mutagenesis (STM) procedure and use it to identify mutants in genes of these subsurface bacteria involved in sediment survival and radionuclide reduction. The mutant genes identified in these studies allow us for the first time to describe at the genetic level microbial processes that are actually being used by environmental bacteria while growing in their natural ecosystems. Identification of these genes revealed facets of microbial physiology ... continued below

Creation Information

Krumholz, Lee R. June 1, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Desulfovibrio desulfuricans G20 and Shewanella oneidensis MR-1 are model subsurface organisms for studying genes involving in situ radionuclide transformation and sediment survival. Our research objective for this project has been to develop a signature-tagged mutagenesis (STM) procedure and use it to identify mutants in genes of these subsurface bacteria involved in sediment survival and radionuclide reduction. The mutant genes identified in these studies allow us for the first time to describe at the genetic level microbial processes that are actually being used by environmental bacteria while growing in their natural ecosystems. Identification of these genes revealed facets of microbial physiology and ecology that are not accessible through laboratory studies. Ultimately, this information may be used to optimize bioremediation or other engineered microbial processes. Furthermore, the identification of a mutant in a gene conferring multidrug resistance in strain MR-1 shows that this widespread mechanism of antibiotic resistance, likely has its origins as a mechanism of bacterial defense against naturally occurring toxins. Studies with D. desulfuricans G20: The STM procedure first involved generating a library of 5760 G20 mutants and screening for potential non-survivors in subsurface sediment microcosms. After two rounds of screening, a total of 117 mutants were confirmed to be true non-survivors. 97 transposon insertion regions have been sequenced to date. Upon further analysis of these mutants, we classified the sediment survival genes into COG functional categories. STM mutant insertions were located in genes encoding proteins related to metabolism (33%), cellular processes (42%), and information storage and processing (17%). We also noted 8% of STM mutants identified had insertions in genes for hypothetical proteins or unknown functions. Interestingly, at least 64 of these genes encode cytoplasmic proteins, 46 encode inner membrane proteins, and only 7 encode periplasmic space and outer membrane associated proteins. Through blast search analysis, we also showed that 81 out of 94 proteins shown to be important in sediment survival have homologs in D. vulgaris, 70 have homologs in Geobacter metallireducens, and 69 have homologs in Geobacter sulfurreducens PCA. Some interesting proteins include ribonucleotide reductase and chemotaxis related proteins. Ribonucleotide reductase catalyzes the reductive synthesis of deoxyribonucleotides from their corresponding ribonucleotides, providing the precursors necessary for DNA synthesis. Two ribonucleotide reductase genes (nrdE, nrdD) were found to be essential for G20 survival in the sediment, but not essential for growth in the lactate-sulfate medium. Bacterial methyl-accepting chemotaxis proteins (MCP) respond to changes in the concentration of attractants and repellents in the environment.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NABIR-1021951-2005
  • Grant Number: None
  • DOI: 10.2172/893584 | External Link
  • Office of Scientific & Technical Information Report Number: 893584
  • Archival Resource Key: ark:/67531/metadc874859

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 4, 2016, 3:20 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Krumholz, Lee R. In-Situ Survival Mechanisms of U and Tc Reducing Bacteria in Contaminated Sediments, report, June 1, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc874859/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.