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Abstract— We are concerned with the computation of 
magnetic fields from known electric currents in the finite element 
setting. In finite element eddy current simulations it is necessary 
to prescribe the magnetic field (or potential, depending upon the 
formulation) on the conductor boundary. In situations where the 
magnetic field is due to a distributed current density, the Biot-
Savart law can be used, eliminating the need to mesh the non-
conducting regions. Computation of the Biot-Savart law can be 
significantly accelerated using a low-rank QR approximation. 
We review the low-rank QR method and report performance on 
selected problems. 

I. INTRODUCTION 

There are many different finite element formulations for 
transient eddy current simulation. In this paper we employ a 
magnetic vector potential formulation as described in [1]. In 
order to completely specify the problem it is necessary to 
apply boundary conditions, and for this particular formulation 
the boundary conditions are either the inhomogeneous 
Dirichlet condition bcn A A× =  or inhomogeneous Neumann 

condition bcn B B× = . These boundary conditions on the 
conductor of interest can be computed using the Biot-Savart 
law, 

4 bc
J dV A
R

µ
π Ω

=∫  

or 

34 bc
J R dV B
R

µ
π Ω

× =∫ . 

The QR procedure is independent of the kernel and can be 
applied to either law, for brevity we will focus on the former 
equation that gives Abc. Applying the Galerkin procedure and 
employing the basis function expansions ( ) ( )bc i iA r W rα=∑  

and ( ) ( )i iJ r c N r=∑  yields the discrete Biot-Savart law 

=Mα Kc , where the bulk of the computational effort is in 
computing and applying the dense matrix K, where K is given 
by 

II. LOW-RANK QR APPROXIMATION 

The matrix K is compressed using a low-rank QR 
decomposition. Consider the geometry shown in Figure 1, 
where the mesh has been decomposed into 24 partitions using 
a graph-based algorithm [2]. The K matrix is then a block 24 

×  24 matrix. Most blocks represent distant interactions and 
hence have a low-rank QR decomposition. The low-rank QR 
decomposition is computed by first selecting r rows and 
columns of the block, where r is the rank, and applying the 
modified Gram-Schmidt procedure [3] to compute Q and R. 
The rank r is adaptive, based on an error tolerance. The row 
and column selection procedure is somewhat ad-hoc and is a 
modification of that used in  [4] for electrostatic applications. 
Blocks of K that represent near interactions are not low-rank, 
however these blocks can be sub-partitioned, and the low-rank 
QR decomposition can be applied to the low-rank sub-blocks. 
This process is applied recursively until the size of the 
partitions decreases below an a-priori threshold, e.g. 50 
elements.  

The mesh in Figure 1 has 20736 volume elements. Using 
the recursive low-rank QR compression, with only 2 levels of 
recursion, resulted in a compression of 109×  for this specific 
problem. The user-specified error tolerance for this specific 
example was 10-3 and the rank of the sub-blocks varied from 4 
< r < 25. It is important to note that as the computational mesh 
is refined, that rank r does not increase, hence the method 
asymptotically approaches O(n)log(n).  
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Figure 1. A finite element mesh of 3 coils, partitioned into 24 
partitions for QR compression. 
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