SPH and Material Failure: Progress Report

PDF Version Also Available for Download.

Description

Smoothed Particle Hydrodynamics (SPH) is a meshless Lagrangian technique for modeling hydrodynamics, and as such offers some unique advantages when applied to problems of material failure and breakup. The two most important of these advantages are: (1) SPH is Lagrangian and robust--i.e., it is never necessary to advect or remap. Damage models typically involve a number of complex history variables (such as the damage associated with the Lagrangian mass, crack orientations, etc.), and advecting these quantities as is required in a mesh based algorithm is a very challenging problem. (2) SPH allows the Lagrangian points to move about, reconnect, or ... continued below

Physical Description

PDF-file: 22 pages; size: 3.1 Mbytes

Creation Information

Owen, J M April 12, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Smoothed Particle Hydrodynamics (SPH) is a meshless Lagrangian technique for modeling hydrodynamics, and as such offers some unique advantages when applied to problems of material failure and breakup. The two most important of these advantages are: (1) SPH is Lagrangian and robust--i.e., it is never necessary to advect or remap. Damage models typically involve a number of complex history variables (such as the damage associated with the Lagrangian mass, crack orientations, etc.), and advecting these quantities as is required in a mesh based algorithm is a very challenging problem. (2) SPH allows the Lagrangian points to move about, reconnect, or separate as dictated by the material flow. This naturally allows for the points to move apart as distinct fragments of material form, resulting in gaps or cracks between the fragments. Typically mesh based algorithms represent the ''cracks'' between fragments as zones of failed material, which is quite different than allowing voids devoid of material to form.

Physical Description

PDF-file: 22 pages; size: 3.1 Mbytes

Source

  • Presented at: Joint Russian American 5 Laboratory Conference on Computational Mathematics/Physics, Vienna, Austria, Jun 19 - Jun 24, 2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-CONF-211403
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 875378
  • Archival Resource Key: ark:/67531/metadc874794

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 12, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 7, 2016, 9:34 p.m.

Usage Statistics

When was this article last used?

Yesterday: 1
Past 30 days: 2
Total Uses: 12

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Owen, J M. SPH and Material Failure: Progress Report, article, April 12, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc874794/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.