Spectroscopy of Single Free Standing Quantum Wells

PDF Version Also Available for Download.

Description

We investigated the interaction of quantum confined exciton states GaAs quantum wells with native surface states. Single molecule photoluminescence (PL) spectroscopy, developed by T. Huser at LLNL was used to probe the unique bare quantum wells in the free standing quantum well structure. The latter was developed by the M. D. Williams at Clark Atlanta University. The goals of the project during this budget cycle were to procure samples containing GaAs free standing QWs, identify suitable regions for PL analysis at Lawrence Livermore, analyze the structures at room temperature and at liquid nitrogen temperatures. The specific regions of interest on ... continued below

Physical Description

PDF-file: 4 pages; size: 79.1 Kbytes

Creation Information

Williams, M D; Hollars, C W; Huser, T; Jallow, N; Cochran, A & Bryant, R March 14, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

We investigated the interaction of quantum confined exciton states GaAs quantum wells with native surface states. Single molecule photoluminescence (PL) spectroscopy, developed by T. Huser at LLNL was used to probe the unique bare quantum wells in the free standing quantum well structure. The latter was developed by the M. D. Williams at Clark Atlanta University. The goals of the project during this budget cycle were to procure samples containing GaAs free standing QWs, identify suitable regions for PL analysis at Lawrence Livermore, analyze the structures at room temperature and at liquid nitrogen temperatures. The specific regions of interest on the sample structures were identified by scanning electron microscopy at Clark Atlanta prior to transport to LLNL. Previous attempts at other facilities using NSOM, cathodoluminescence, and conventional PL showed little luminescence activity at room temperature from the 200 {angstrom} thick wells. This suggested either excess recombination due to surface states in the quantum well region or insufficient absorption length for photoluminescence. The literature suggested that the effect of the defects could be eliminated by reducing the sample temperature below their associated activation energies. In our previous subcontract work with LLNL, a significant amount of effort was expended to modify the apparatus to allow low temperature measurements. The modifications were not successful and we concluded that in order to do the measurements at low temperature we would need to purchase a commercial optical cryostat to get reliable results. Ms. Rochelle Bryant worked during the summer as an intern at LLNL on the project under the supervision of C. Hollars and in collaboration with T. Huser and found that PL emission could be obtained at room temperature. This was a surprising result as the literature and our experience shows that there is no PL emission from GaAs at room temperature. We speculate that this is due to the small interaction region excited by the laser source. We proceeded with the project using this new found room temperature capability and have analyzed the effect of various chemical species on the PL emission from the GaAs QWs. We were able to observe some significant intensity modifications of the PL spectra with chemical adsorbants. This progress holds promise for the development of this structure as a chemical or biological sensor.

Physical Description

PDF-file: 4 pages; size: 79.1 Kbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: UCRL-TR-219998
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/883615 | External Link
  • Office of Scientific & Technical Information Report Number: 883615
  • Archival Resource Key: ark:/67531/metadc874764

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 14, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 2, 2016, 12:29 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Williams, M D; Hollars, C W; Huser, T; Jallow, N; Cochran, A & Bryant, R. Spectroscopy of Single Free Standing Quantum Wells, report, March 14, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc874764/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.