New evidence for a magmatic origin of some gases in the Geysers geothermal reservoir

PDF Version Also Available for Download.

Description

The Geysers vapor-dominated geothermal reservoir is known to have a wide range of gas concentrations in steam (<100 to >75,000 ppmw), but the variations in gas compositions and the origin of the gases have been little studied. Low gas concentrations and steam isotopes similar to meteoric waters are found in the SE Geysers, but steam high in gas and HCI from a high temperature reservoir (HTR) in the NW Geysers has been thought to be related to metamorphic or magmatic brine. New analyses of noble gas isotopes show that the highest gas steam from the HTR has high {sup 3}He/{sup ... continued below

Physical Description

297-301

Creation Information

Truesdell, A.H.; Kennedy, B.M.; Walters, M.A. & D'Amore, F. January 20, 1994.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Geysers vapor-dominated geothermal reservoir is known to have a wide range of gas concentrations in steam (<100 to >75,000 ppmw), but the variations in gas compositions and the origin of the gases have been little studied. Low gas concentrations and steam isotopes similar to meteoric waters are found in the SE Geysers, but steam high in gas and HCI from a high temperature reservoir (HTR) in the NW Geysers has been thought to be related to metamorphic or magmatic brine. New analyses of noble gas isotopes show that the highest gas steam from the HTR has high {sup 3}He/{sup 4}He (8.3 Ra), and very low {sup 36}Ar and radiogenic {sup 40}Ar/{sup 4}He, indicating a strong magmatic component and essentially no atmospheric or crustal noble gases. Other samples from the HTR show various amounts of atmospheric dilution of the magmatic gas and lower HCI and total gas contents. The occurrence of steam in the NW Geysers highly enriched in heavy isotopes of oxygen and hydrogen supports the indications of remnant magmatic fluid: The existence of this fluid strongly suggests that the HTR was formed by rapid heating and catastrophic boiling resulting from injection of magma.

Physical Description

297-301

Subjects

Source

  • Proceedings, nineteenth workshop on geothermal reservoir engineering, Stanford University, Stanford, CA, January 18-20, 1994

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SGP-TR-147-42
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 889231
  • Archival Resource Key: ark:/67531/metadc874752

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 20, 1994

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 30, 2016, 12:50 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Truesdell, A.H.; Kennedy, B.M.; Walters, M.A. & D'Amore, F. New evidence for a magmatic origin of some gases in the Geysers geothermal reservoir, article, January 20, 1994; United States. (digital.library.unt.edu/ark:/67531/metadc874752/: accessed August 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.