THE INFLUENCE OF REPOSITORY THERMAL LOAD ON MULTIPHASE FLOW AND HEAT TRANSFER IN THE UNSATURATED ZONE OF YUCCA MOUNTAIN

PDF Version Also Available for Download.

Description

This paper investigates the impact of proposed repository thermal-loading on mountain-scale flow and heat transfer in the unsaturated fractured rock of Yucca Mountain, Nevada. In this context, a model has been developed to study the coupled thermal-hydrological (TH) processes at the scale of the entire Yucca Mountain. This mountain-scale TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the latest rock thermal and hydrological properties. The TH model consists of a two-dimensional north-south vertical cross section across the entire unsaturated zone model domain and uses refined meshes near and around the proposed repository block, based on ... continued below

Creation Information

Yu-Shu Wu, Sumit Mukhopadhyay, Keni Zhang, and G. S. Bodvarsson April 16, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper investigates the impact of proposed repository thermal-loading on mountain-scale flow and heat transfer in the unsaturated fractured rock of Yucca Mountain, Nevada. In this context, a model has been developed to study the coupled thermal-hydrological (TH) processes at the scale of the entire Yucca Mountain. This mountain-scale TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the latest rock thermal and hydrological properties. The TH model consists of a two-dimensional north-south vertical cross section across the entire unsaturated zone model domain and uses refined meshes near and around the proposed repository block, based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climatic conditions. The model simulations provide insights into thermally affected liquid saturation, gas- and liquid-phase fluxes, and elevated water and rock temperature, which in turn allow modelers to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts.

Source

  • ILHRWM 2006, Las Vegas, Nevada

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: n/a
  • Grant Number: DE-AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 883057
  • Archival Resource Key: ark:/67531/metadc874749

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 16, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 5, 2016, 8:52 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Yu-Shu Wu, Sumit Mukhopadhyay, Keni Zhang, and G. S. Bodvarsson. THE INFLUENCE OF REPOSITORY THERMAL LOAD ON MULTIPHASE FLOW AND HEAT TRANSFER IN THE UNSATURATED ZONE OF YUCCA MOUNTAIN, article, April 16, 2006; Las Vegas, Nevada. (digital.library.unt.edu/ark:/67531/metadc874749/: accessed September 26, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.