A TEMPERATURE DROP MODEL FOR TWO-PHASE FLOW IN GEOTHERMAL WELLBORES

PDF Version Also Available for Download.

Description

This temperature-drop model is formulated as an answer to the question, ''How much further up the wellbore will a unit mass of fluid be when its temperature is exactly one-degree cooler than at its current position''. The repeated calculation yields a temperature profile extending upwardly from the bubble point. This approach is based on a paradigm that emphasizes temperature and volume for a system that is dominated by one component. It has only a small overlap with the more popular paradigm for this topic which involves mechanical pressures and energy balances. A set of plots is given which shows the ... continued below

Physical Description

183-188

Creation Information

Michels, D.E. January 22, 1985.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This temperature-drop model is formulated as an answer to the question, ''How much further up the wellbore will a unit mass of fluid be when its temperature is exactly one-degree cooler than at its current position''. The repeated calculation yields a temperature profile extending upwardly from the bubble point. This approach is based on a paradigm that emphasizes temperature and volume for a system that is dominated by one component. It has only a small overlap with the more popular paradigm for this topic which involves mechanical pressures and energy balances. A set of plots is given which shows the effects on temperature and pressure profiles due to changes of single factors when all other factors are held constant. The factors include common wellbore and reservoir parameters. These latter plots give considerable insight into wellbore processes and the nature of constraints on two-phase flow for an essentially one-component substance.

Physical Description

183-188

Source

  • 10. annual workshop on geothermal reservoir engineering, Stanford, CA (US), 01/22/1985

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SGP-TR-84
  • Report No.: CONF-850107-31
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 892355
  • Archival Resource Key: ark:/67531/metadc874707

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 22, 1985

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 2, 2016, 3:13 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Michels, D.E. A TEMPERATURE DROP MODEL FOR TWO-PHASE FLOW IN GEOTHERMAL WELLBORES, article, January 22, 1985; United States. (digital.library.unt.edu/ark:/67531/metadc874707/: accessed August 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.