DATE: April 23, 1958
SUBJECT: Remote Maintenance Experimental Work on a Reactor System Pump
TO: Listed Distribution
FROM: W. B. McDonald, C. K. McGlothlan, E. Storto

Abstract

The information presented is an experimentally determined evaluation of standard remote handling equipment applied to the problems associated with remote maintenance of a typical reactor system component.

NOTICE

This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and, therefore, does not represent a final report.

APPROVED BY
PATENT DEPARTMENT
5/21/57 Autunb Davis
DATE SIGNATURE
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Remote Maintenance Experimental Work on a Reactor System Pump

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>2.0 Summary and Conclusions</td>
<td>3</td>
</tr>
<tr>
<td>3.0 Discussion</td>
<td>5</td>
</tr>
<tr>
<td>4.0 Appendix</td>
<td>9</td>
</tr>
<tr>
<td>5.0 Acknowledgement</td>
<td>23</td>
</tr>
<tr>
<td>6.0 Future Considerations</td>
<td>24</td>
</tr>
</tbody>
</table>
1.0 Introduction

A molten salt nuclear power reactor system intended for application to the generation of commercially distributed electricity must, in order to be competitive with conventional central station plants, be capable of operating for a period of 20 years without major overhaul. Preventive maintenance and replacement of faulty components must be performed with minimum interruption to power operation, and due to a high level of radioactivity, maintenance and repair operations on the reactor primary system must be conducted remotely.

The test described in this report was devised as an approach to the solution of a typical remote maintenance problem of the type likely to be encountered in the operation of a molten salt power reactor system. Its objectives were:

(a) To evaluate a standard model commercially available motor-operated mechanical arm manipulator as a reactor system remote maintenance tool.

(b) To determine the character and extent of special fixtures and tools required to perform a typical remote maintenance operation with the standard manipulator.

(c) To gain insight to the design criteria which should be applied to reactor system components, to make them suitable for remote maintenance.

(d) To gain insight to the magnitude of effort required to establish a workable remote maintenance procedure, and to train an operator to perform a maintenance task using the standard manipulator, special tools and fixtures, and special procedure.

(e) To determine the feasibility of using closed circuit television to view and control remote maintenance operations.

2.0 Summary and Conclusions

A 3-1/2" NaK pump (Model PK, see Fig. 11) was set up as a test dummy in an uncontaminated hot cell, where a new mechanical arm
manipulator (GM Model E-3) was available. Fixtures were designed and added to the pump bowl to permit making and breaking all service lines en bloc, by the manipulator. Other fixtures and tools were designed and fabricated as required for the removal and replacement of the pump rotary element by the manipulator. A procedure was written for the complete operation, and a technician with no previous manipulator experience was assigned to perform the work.

After becoming familiar with the operating procedure and gaining facility using the equipment by direct observation through the cell window, the technician was required to repeat the procedure using indirect observation by closed circuit television.

Results of the test show that commercially available equipment can be used, with a few simple tools and fixtures, to perform a typical reactor system maintenance operation. It was also demonstrated that a good technician can, with no special training, rapidly acquire facility in using the manipulator for maintenance operations.

No radical changes in design principles are indicated to make reactor system components suitable for remote manipulation. The main considerations are accessibility of parts, piloted fits, and en bloc service connections. When designing a component, it should be kept in mind that operations which can be easily performed by hand become difficult when performed by remote manipulation, and the effort required to design a component requiring minimum handling for maintenance will be very worthwhile. The component and the tools for its maintenance should be designed for the particular manipulator to be used in the installation, and the component and its installation should be designed wherever possible for maintenance from the overhead position.

It is possible, with proper lighting, to apply commercially available closed circuit television equipment to control-viewing of remote maintenance operations. Two circuits are necessary, to provide rectilinear vision in lieu of normal depth perception. The use of TV for such applications will require the perfection of radiation-resistant equipment, now under development.
3.0 Discussion

3.1 Test Facility

The facility used was an uncontaminated hot cell (see Fig. 1) in the newly constructed ORNL Fission Product Pilot Plant and was borrowed from the Radioisotope Production Department until required for their occupancy, a period of six weeks. The cell floor is built in two levels, one at building floor level, and one at window level. The test pump was mounted at floor level, which brought the rotary element near window height. Special tools and fixtures were stored on the upper level. Service outlets for electricity and compressed air were available. A General Mills Model E-3 mechanical arm manipulator on a traveling bridge mount covered the work area (see Fig. 2), and the services of an overhead crane were available through a hatch in the cell roof.

Several Argonne Model 8 master-slave units were also available, and their versatility would have been appreciated in many of the test operations; the nature of their construction, however, restricts their movements to a small area, and it was considered unrealistic to use them as tools for maintenance on a component representing part of a large system. A remotely controlled, servo-operated master-slave unit is now under development by Borg-Warner Company, and if this proves successful, could later be adapted to remote maintenance use.

Direct viewing through a cell window (Figs. 3 and 4) was used in working out the test procedure. This procedure was later repeated, using a Dage closed circuit television system for viewing (Figs. 5 and 6).

3.2 Test Article

A pump rotary element consisting of impeller, shaft, bearings, and seals will probably be the only moving part in a molten salt power reactor primary fluid system. Since failure of this component would be likely during a 20 year operating period, it was decided that its removal and replacement would constitute a typical maintenance operation.
An available Model PK pump was selected for the test. It is a vertical shaft, horizontal discharge, sump type pump. (See Fig. 7) The only modification made for test purposes was to attach a frame to the pump bowl, for support of the en bloc service line connections (See Fig. 8).

3.3 Tools and Fixtures

Tooling was relatively simple and inexpensive. It consisted of the following items: (See Fig. 9. The numbers on the figure correspond to those below.)

3.3.1 Pneumatic impact wrench

A standard 1/2" drive Thor Model 24L wrench was used, with a shop-made adapter for attachment to the manipulator hook, and a factory-made accessory for torque control. Air supply to the wrench was regulated by the operating technician, outside the cell. The impact wrench was proven to be effective for fast nut running, and provided all power necessary to tighten or loosen nuts or bolts. Torque control, however, was found to be erratic whether controlled from outside the cell by a supply pressure regulator, or by the wrench torque attachment. Torque tests were run using various combinations of air pressure and operating time. Results are given in tabular form in the Appendix, Item 1. For applications where accurate torquing of bolts is necessary, a more positive method of torque control must be devised.

3.3.2 Hook-and-eye socket wrench

Special wrench with 1-1/8" socket to be driven by the manipulator hook. (See Fig. 9)

3.3.3 Hook-and-eye socket wrench

Special wrench with 1-5/16" socket to be driven by the manipulator hook. (See Fig. 9)

3.3.4 Socket, 3/4", for impact wrench. (See Fig. 9)

3.3.5 Socket, 1-1/8", for impact wrench. (See Fig. 9)
3.3.6. Counterweight assembly with three lead bricks. (See Fig. 9)

3.3.7 Eye bolt for lifting pump rotary element. (See Fig. 9)

3.3.8 Shaft locking plate for use in installing eye bolt in pump rotary element. (See Fig. 9)

3.3.9 Bolt tray for storing cap screws and bolts. (See Fig. 9)

3.3.10 Jig for remotely removing hook from General Mills manipulator. (See Fig. 9)

3.3.11 Jig for remotely removing fingers from General Mills manipulator (with fingers in jig). (See Fig. 9)

3.3.12 Feeler gages for checking gap between pump flanges. (See Fig. 9)

3.3.13 Jack bolts for pump flanges. (The jack bolts, threads and all other threaded connectors were coated with molybdenum disulphide for lubrication.)

3.4 Test Procedure

Test work on the removal and replacement of the pump rotary element was conducted in two phases. The first phase may be described as a series of cut-and-try experiments, in which the various operations involved were individually diagnosed, and the necessary manipulator movements and tooling worked out. The second phase consisted of integrating the individual operations into a continuous procedure, represented by a check list. (Appendix, Items 2 and 3.)

The procedure thus developed was then practiced by the technician operator to gain facility with the equipment. A movie was made of the complete procedure, for time and motion study reference.

After the operator had become proficient in the procedure, a closed circuit television system was set up and the procedure was again attempted with no direct viewing. It was found that lack of depth perception, inadequate lighting, and rather coarse picture
resolution imposed a severe handicap. Certain operations were performed successfully, but with great difficulty. The indications are very strong, however, that with a pair of camera-monitor circuits to give rectilinear or stereo vision, and with proper lighting, lens quality, and circuit adjustment, it will be possible to conduct remote maintenance operations with television viewing.

Details of the television experiment are given in the Appendix, Item 4.

3.5 Maintenance on General Mills Manipulator

The manipulator, although designed for installation in remote and contaminated areas, must be maintained in a manner similar to all machines. The maintenance performed on this manipulator during the 6 weeks of the test are listed in the Appendix, Item 5.

3.6 Log of Events and Recommendations for Improving Remote Removal of Pump.

See Appendix, Item 6.
Appendix - Item 1

Typical Torque Results Obtained with the Impact Wrench and Checked with a Hand Operated Torque Wrench

a. By varying the air pressure and using a 1-5/16" socket on one cap screw:

<table>
<thead>
<tr>
<th>Air Pressure (psig)</th>
<th>Torque (1st attempt) (ft-lbs)</th>
<th>Torque (2nd attempt) (ft-lbs)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>110</td>
<td>65</td>
<td>Variable</td>
</tr>
<tr>
<td>80</td>
<td>60</td>
<td>55</td>
<td>"</td>
</tr>
<tr>
<td>70</td>
<td>40</td>
<td>40</td>
<td>"</td>
</tr>
<tr>
<td>65</td>
<td>25</td>
<td></td>
<td>"</td>
</tr>
<tr>
<td>60</td>
<td>30</td>
<td>10</td>
<td>"</td>
</tr>
<tr>
<td>50</td>
<td>5*</td>
<td>5*</td>
<td>"</td>
</tr>
</tbody>
</table>

* No impact by wrench.

b. By maintaining the air pressure and time constant and using a 1-5/16" socket on one cap screw:

<table>
<thead>
<tr>
<th>Air Pressure (psig)</th>
<th>Time (sec)</th>
<th>Torque (ft-lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>10</td>
<td>110</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>70</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>70</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>70</td>
</tr>
<tr>
<td>90</td>
<td>5</td>
<td>65</td>
</tr>
<tr>
<td>90</td>
<td>5</td>
<td>70</td>
</tr>
</tbody>
</table>

c. By maintaining the air pressure and time constant and using a 1-5/16" socket on two cap screws. Torque varied by control on impact wrench.
<table>
<thead>
<tr>
<th>Air Pressure (psig)</th>
<th>Torque Regulator Setting</th>
<th>Torque Obtained (ft-lbs)</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>4</td>
<td>45</td>
<td>10</td>
</tr>
<tr>
<td>90</td>
<td>5</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>90</td>
<td>6</td>
<td>55</td>
<td>10</td>
</tr>
<tr>
<td>90</td>
<td>7</td>
<td>65</td>
<td>10</td>
</tr>
<tr>
<td>90</td>
<td>7</td>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>90</td>
<td>8</td>
<td>65</td>
<td>10</td>
</tr>
<tr>
<td>90</td>
<td>8</td>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>90</td>
<td>9</td>
<td>65</td>
<td>10</td>
</tr>
<tr>
<td>90</td>
<td>9</td>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>90</td>
<td>9</td>
<td>65</td>
<td>10</td>
</tr>
</tbody>
</table>
Appendix - Item 2

PK Pump Remote Disassembly Check List

<table>
<thead>
<tr>
<th>Operation</th>
<th>Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Set rotation of impact wrench to unscrew and adjust torque to 40 ft-lbs.</td>
<td>GM finger. Set air pressure at 65 psi outside cell.</td>
</tr>
<tr>
<td>2. Attach 3/4" socket to impact wrench</td>
<td>GM finger, 3/4" socket, socket lock clip & impact wrench jig</td>
</tr>
<tr>
<td>3. Replace GM finger with GM hook</td>
<td>Hook changing bracket and finger changing bracket</td>
</tr>
<tr>
<td>4. Attach impact wrench</td>
<td>GM hook, impact wrench jig</td>
</tr>
<tr>
<td>5. Unscrew (15) header block cap screws in numerical order</td>
<td>GM hook and impact wrench</td>
</tr>
<tr>
<td>6. Remove impact wrench from GM hook</td>
<td>Impact wrench jig</td>
</tr>
<tr>
<td>7. Replace GM hook with GM finger</td>
<td>Hook changing bracket and finger changing bracket</td>
</tr>
<tr>
<td>8. Replace 3/4" socket on impact wrench with 1-5/16" socket</td>
<td>GM finger, socket lock clip, 1-5/16" socket, impact wrench jig</td>
</tr>
<tr>
<td>9. Insert jack bolts in upper pump flange</td>
<td>4 each 3/4" cap screws and GM finger</td>
</tr>
<tr>
<td>10. Replace GM finger with GM hook</td>
<td>Hook changing bracket and finger changing bracket</td>
</tr>
<tr>
<td>11. Attach hook-and-eye tool to hook</td>
<td>1-1/8" hook-and-eye tool, GM hook and bench</td>
</tr>
<tr>
<td>12. Screw (4) jack bolts in snug (10 - 30 ft-lbs.)</td>
<td>GM hook, 1-1/8" eye bolt tool</td>
</tr>
<tr>
<td>14. Attach impact wrench</td>
<td>GM hook and impact wrench jig</td>
</tr>
<tr>
<td>15. Unscrew (12) cap screws in pump flange in numerical order</td>
<td>GM hook and impact wrench</td>
</tr>
<tr>
<td>16. Remove impact wrench</td>
<td>GM hook, impact wrench jig</td>
</tr>
<tr>
<td>17. Attach hook-and-eye tool to GM hook</td>
<td>1-1/8" hook-and-eye tool, GM hook and bench</td>
</tr>
<tr>
<td>18. Tighten each jack bolt 1/2 turn until gap between flanges is .255"</td>
<td>1-1/8" hook-and-eye tool and GM hook</td>
</tr>
<tr>
<td>Operation</td>
<td>Tool</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>19. Remove hook-and-eye tool</td>
<td>Bench, GM hook</td>
</tr>
<tr>
<td>20. Replace GM hook with GM fingers</td>
<td>Hook changing bracket and finger changing bracket</td>
</tr>
<tr>
<td>21. Secure spacer gage in GM finger</td>
<td>.255 inch spacer gage on bench and GM finger</td>
</tr>
<tr>
<td>22. Check gap between flanges on pump</td>
<td>Spacer gage, GM finger</td>
</tr>
<tr>
<td>23. Remove spacer gage</td>
<td>GM finger, bench</td>
</tr>
<tr>
<td>24. Attach pump shaft locking plate</td>
<td>GM finger, bench</td>
</tr>
<tr>
<td>25. Insert cap screws in counterweight</td>
<td>GM fingers, 2 each 3/4" cap screws</td>
</tr>
<tr>
<td>26. Remove 3 cap screws from pump</td>
<td>GM fingers, 3 each 7/8" cap screws to bolt tray</td>
</tr>
<tr>
<td>27. Replace GM finger with GM hook</td>
<td>Hook changing bracket and finger changing bracket</td>
</tr>
<tr>
<td>27a. Repeat operation No. 17</td>
<td>l-1/8" eye bolt tool and GM hook</td>
</tr>
<tr>
<td>27b. Unscrew 2 jack bolts</td>
<td>Bench, GM hook</td>
</tr>
<tr>
<td>27c. Remove hook-and-eye tool</td>
<td>Hook changing bracket and finger changing bracket</td>
</tr>
<tr>
<td>27d. Replace GM hook with GM finger</td>
<td>GM finger, 2 each 3/4" cap screws to bolt tray</td>
</tr>
<tr>
<td>27e. Remove 2 cap screws</td>
<td>GM hook, counterweight from bench</td>
</tr>
<tr>
<td>27f. Repeat operation No. 27</td>
<td>l-1/8" hook-and-eye tool from bench and GM hook</td>
</tr>
<tr>
<td>28. Lift counterweight into position</td>
<td>l-1/8" hook-and-eye tool and GM hook</td>
</tr>
<tr>
<td>29. Attach hook-and-eye tool to GM hook</td>
<td>Bench, GM hook</td>
</tr>
<tr>
<td>30. Tighten (2) counterweight bolts to 5 - 10 ft-lb</td>
<td>GM hook, and eye bolt from bench</td>
</tr>
<tr>
<td>31. Remove hook-and-eye tool from hook</td>
<td>Overhead bridge crane and wire rope choker, GM hook</td>
</tr>
<tr>
<td>32. Insert eye bolt in pump rotary element</td>
<td></td>
</tr>
<tr>
<td>33. Lift pump rotary assembly out of pump bowl</td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td>Tool</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>34: Set pump rotary assembly on stand on second floor cell</td>
<td>Special pump stand</td>
</tr>
<tr>
<td>35. Replace GM hook with GM finger</td>
<td>Hook and changing bracket and finger changing bracket</td>
</tr>
<tr>
<td>36. Remove solid "O" ring gasket from pump lower flange and lay on bench</td>
<td>GM finger</td>
</tr>
<tr>
<td>37. Remove solid copper gasket from header block and lay on bench</td>
<td>GM finger</td>
</tr>
</tbody>
</table>
PK Pump Remote Assembly Check List

<table>
<thead>
<tr>
<th>Operation</th>
<th>Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Install 15 cap screws in upper half of header block</td>
<td>By hand outside cell</td>
</tr>
<tr>
<td>2. Install 9 of 12 cap screws in pump rotary element flange</td>
<td>By hand outside cell</td>
</tr>
<tr>
<td>3. Install counterweight on pump rotary element (torque cap screws at 10 ft-lbs)</td>
<td>By hand outside cell, 1-1/8" socket and handle</td>
</tr>
<tr>
<td>4. Install lifting eye bolt in rotary element</td>
<td>By hand outside cell</td>
</tr>
<tr>
<td>5. Install small "O" ring gasket on pump rotary element</td>
<td>By hand outside cell</td>
</tr>
<tr>
<td>6. Plumb pump rotary element and header block assembly by moving counterweight</td>
<td>Level. Adjust by hand outside cell</td>
</tr>
<tr>
<td>7. Lock pump shaft in position</td>
<td>Install lock plate by hand outside cell</td>
</tr>
<tr>
<td>8. Install flat gasket on lower header block</td>
<td>GM finger</td>
</tr>
<tr>
<td>9. Install "O" ring gasket in pump bowl flange</td>
<td>GM finger</td>
</tr>
<tr>
<td>10. Replace GM finger with GM hook</td>
<td>Hook changing bracket and finger changing bracket</td>
</tr>
<tr>
<td>11. Lower pump rotary element into bowl assembly</td>
<td>By overhead bridge crane</td>
</tr>
<tr>
<td>12. Attach hook-and-eye tool to GM hook</td>
<td>GM hook, 1-1/8" hook-and-eye tool from bench</td>
</tr>
<tr>
<td>13. Unscrew counterweight cap screws (2 each - 3/4" cap screws)</td>
<td>GM hook, hook-and-eye tool</td>
</tr>
<tr>
<td>14. Remove hook-and-eye tool</td>
<td>GM hook and bench</td>
</tr>
<tr>
<td>15. Replace GM hook with GM finger</td>
<td>Hook changing bracket and finger changing bracket</td>
</tr>
<tr>
<td>16. Remove 2 counterweight bolts</td>
<td>GM fingers, bolt tray</td>
</tr>
</tbody>
</table>
17. Repeat operation No. 10
18. Remove counterweight assembly
19. Replace GM hook with GM finger
20. Install 3 pump flange cap screws
21. Secure "No go" feeler gage to GM finger
22. Check flange gap every 120°
23. Remove feeler gage from GM finger
24. Secure "go" feeler gage to GM finger
25. Check pump flange gap
26. Remove feeler gage from GM finger
27. Replace GM finger with GM hook
28. Attach hook-and-eye tool to GM hook
29. Tighten all pump cap screws down snug alternating every 180° (5 - 10 ft-lbs of torque)
30. Remove hook-and-eye tool
31. Replace GM hook with GM fingers
32. Secure "no go" feeler gage to GM finger
33. Check flange gap every 120°
34. Remove feeler gage from GM finger
35. Secure "go" feeler gage to GM finger
36. Check pump flange gap
37. Remove feeler gage from GM finger
38. Set rotation of impact wrench
39. Replace GM finger with GM hook

GM hook and bench
Hook changing bracket and finger changing bracket
GM finger, 3 each 7/8" cap screws from bolt tray
Use .265 inch feeler gage from bench
Feeler gage & GM finger
GM finger to bench
Use .260 inch feeler gage from bench
Feeler gage & GM finger
GM finger to bench
Hook changing bracket
and finger changing bracket
GM hook, 1-5/16" hook-and-eye tool from bench
GM hook and hook-and-eye tool
GM hook to bench
Hook changing bracket and finger changing bracket
Use .260 inch feeler gage
GM fingers & feeler gage
GM finger to bench
Use .255 inch feeler gage from bench
Feeler gage to GM finger
GM finger to bench
GM fingers and impact wrench jig
Hook changing bracket and finger changing bracket
40. Attach impact wrench
41. Tighten all pump bolts for 10 seconds alternating every 180° to 50 - 75 ft-lbs of torque
42. Remove impact wrench
43. Replace GM hook with GM fingers

44. Secure "no go" feeler gage to GM finger
45. Check pump flange gap
46. Remove feeler gage from GM finger
47. Secure "go" feeler gage to GM finger
48. Check pump flange gap
49. Remove feeler gage from GM finger
50. Replace 1-5/16" socket with 3/4" socket on impact wrench
51. Set torque to 5 - 15 ft-lbs on impact wrench
52. Replace GM fingers with GM hook

53. Attach impact wrench
54. Tighten all header block cap screws by alternating between screws
55. Repeat operation 54 except use 30 ft-lbs of torque on impact wrench
56. Remove impact wrench
57. Remove eye bolt in rotary element of pump
58. Remove shaft locking plate

GM hook, 1-5/16" socket and impact wrench jig
GM hook and impact wrench
GM hook and impact wrench
Set air pressure at 85 lbs outside cell
GM hook and impact wrench jig
Hook changing bracket and finger changing bracket
Use .255 inch feeler gage
Spacer gage
GM finger to bench
Use .250 inch feeler gage
GM finger to feeler gage
GM finger to bench
GM finger, 3/4" socket lock clip and impact wrench jig
Set air pressure at 50 psi outside cell
Hook changing bracket and finger changing bracket
GM hook and impact wrench jig
GM hook and impact wrench
Set air pressure at 75 psi outside cell
GM hook and impact wrench jig
GM hook to bench
GM hook to bench
Appendix - Item 4

Operation by Television

After the pump had been successfully disassembled and assembled three times remotely by viewing the various operations through the cell window, a closed circuit television system was borrowed from the Reactor Experimental Engineering Division for use in viewing the same disassembly and assembly operations. The television system was used only a few days; however, knowledge was gained on its capabilities and limitations. Only a few of the pump remote disassembly and assembly operations were performed using the television due to the short time available.

The closed television system consisted of (a) one forced air-cooled Dage "Cyclops" camera approximately 3 inches in diameter and 18 inches long with a single lens, mounted inside the cell; (b) one Dage camera control cabinet including a 3-inch monitor screen, mounted outside the cell; (c) one 17" Conrac view screen, mounted outside the cell.

The camera was mounted in two locations in the cell in an effort to obtain the best viewing vantage point. One of the positions consisted of locating the camera on a fixed tripod on the window level of the cell and directing it at the particular operation on the pump. The camera was mounted approximately two feet higher in elevation than the pump. In the other position the camera was mounted on the General Mills manipulator upper housing approximately 8 feet higher in elevation than the pump and moved as the manipulator bridge moved. The camera was directed down to the tool on the manipulator and therefore moved to different locations as the manipulator moved. There are advantages and disadvantages to both methods of mounting the camera, and are listed below.

1. Fixed Location

Advantages Disadvantages

a. Good vertical alignment of tool at 0° azimuth
 b. Control cable from camera to monitor and air line to camera are fixed and do not have to be moved after initial installation

a. Poor vertical alignment of tool at 90° azimuth
 b. No 3-D effect
 c. Camera with a single lens for detail work will require moving for each manipulator
c. Elevation of tool on manipulator with respect to pump can be easily observed.

d. Slightly better detailed picture on 17" view screen as compared with GM camera location.

2. Movable Location (Located on GM Manipulator)

Advantages

a. Good vertical alignment of tool at any azimuth.

b. In general, the camera can move with the manipulator and view the various detail operations on the pump, etc., without relocating the camera after each operation.

c. No 3-D effect

Recommendations & Requirements for Installing Closed Circuit Television for Use in Viewing Remote Reactor Maintenance Operations

1. Camera and lenses should be radiation resistant.

2. Camera should withstand 250°F temperatures.

3. Camera should be equipped with a remotely controlled 3 or 4 lens turret that will permit remote selection of any of the lenses with remote adjustment of aperture and focus. In addition, the camera should have a remotely controlled pan and tilt mount for aiming the camera vertically and horizontally.

4. A minimum of two cameras and view screens are required for depth perception.

5. Cameras should be mounted semi-permanently around the reactor such that they can be picked up with an overhead crane or manipulator and moved to a new location. Provide suitable openings in the reactor shielding to permit inserting and removing the cameras for maintenance operations.

6. Cameras should be mounted level or slightly above the location where the work of the manipulator is being performed.
7. One of the two cameras should be mounted such that an overall picture of the manipulator and reactor can be obtained, if necessary, to prevent a collision of the manipulator with the reactor and auxiliary equipment when moving the manipulator into position.

8. Both of the cameras, 90° apart, should be capable of being directed on the work location to follow the detail operation of the manipulator.

9. Color TV or 3-D TV is not necessary to perform the operations.

10. When using a General Mills manipulator, the TV cameras should be mounted parallel and perpendicular to the manipulator bridge, if possible, in order to coordinate the movements of the control levers on the manipulator with respect to the picture on television.

11. Lighting of the reactor components should be from 30 - 50 foot-candles.
Appendix - Item 5

Maintenance on GM Manipulator

1. Vent plug in hoisting gear box was originally installed in wrong hole and oil dripping developed after several hours of operation. This condition got worse as the temperature of the cell increased. After about 3 days of operation, the GM was shut down and an investigation by a mechanic disclosed the incorrect installation of the vent plug and that the gear box was almost dry. The entire manipulator was relubricated as a preventive maintenance measure. Down time - 8 hours.

2. During the fourth week of operation, the grip force indicator did not register the correct force before the ball indent type slip clutch would slip. It was thought that the clutch was slipping before the maximum grip force was exerted. In order to correct for this it was necessary to add .020 inch in shims to the clutch assembly. This required that the lower gear box on the GM arm be disassembled. Down time - 12 hours.

3. About 4 hours of operation after the clutch was repaired the same condition developed. The grip force indicator would not indicate the correct grip force before the clutch slipped. This time the mechanics found that the sensing coil that obtains the grip force of the fingers in the manipulators was not operating properly. An effort was made to repair it but it was not successful without a new coil. At this time the factory was called and they agreed to install a new revised clutch assembly and force indicator in the manipulator free of charge as soon as it could be sent back to the factory. The manipulator was reassembled for use on this job; however, it was necessary to guess at the grip force during operation. The new clutch can be adjusted without disassembling the forearm gear box. Down time - 8 hours.

4. During the fourth week of operation, a condition existed such that the three section telescoping boom would not raise the last 5 inches of travel. The two sections of the telescoping boom that would not raise were partially disassembled with the ball bearing between the two telescoping tubes removed. No visible signs of trouble were observed. The
balls were reinstalled in the telescoping tubes and the entire mechanism reassembled. The manipulator operated in the correct manner even though no repairs were made. Down time - 4 hours.

Total Operating Time - Approximately 75 hours over a period of 6 weeks.
Appendix - Item 6

Log of Events and Recommendations
For
Improving Maintainability of Pump

1. Edges of lock plates part number A-2906 (ORNL drawing F-2-02-054-2882) extended past edge of rotary element approximately 1/32" - 1/16" and caused scoring of the pump bowl wall during first disassembly. These sharp edges were filed off flush with the edge of the rotary element.

2. The rotation of the pump shaft was checked before the first disassembly operation and a slight rubbing was observed. This did not occur again after the next 2 assembly operations.

3. During the first disassembly of the pump, the studs and nuts both came out together and when the stud came out, the nut was unscrewed on the stud. This condition was not satisfactory and as a result there were 24 pieces of hardware to handle remotely. To eliminate 12 of these pieces, cap screws were used in place of the studs and nuts.

4. It is suggested that the cap screws both in the pump and header block be softer than the stationary part they are being threaded into. This will prevent damage to the threads in the stationary element. In case the cap screws are cross threaded they can be replaced with new ones and no damage will have been done to the stationary element.

5. All gaskets should be designed such that they can be assembled on the rotary element before it is installed in the pump bowl. In addition, during the disassembly operation, the gaskets should remain attached to the rotary element so that they will come out with the rotary element and not have to be taken out separately.

6. All cap screws, bolts, etc., should be, where possible, installed such that they can be removed and replaced from directly overhead.

7. It is suggested that all auxiliary gas and oil lines to the pump be connected by means of a header block and not have individual pipe connections for each line.

8. Cap screws should be designed with tapered noses and the threads removed for a short distance back from the end of the screw so they stand upright in their holes without leaning or falling out. (See Fig. 10)
9. The pump should be self guiding into the pump bowl for ease of assembly and should seat within a few thousandths of an inch before it is released by the overhead crane.

10. It should not be necessary for the jack bolts to do anything except break the seal between pump rotary element and the pump bowl. As soon as this seal is broken the crane should be able to lift the rotary element out of the bowl without any binding or restriction of any kind. A few thousandths of an inch movement of the jack bolts should be sufficient to break the seal.

11. A positive drive is required to tighten and loosen the various cap screws. This drive must have a variable speed of 2 - 15 RPM and develop a variable torque from 0 - 300 ft-lbs. The torque should be adjustable to ± 5%. The drive should stop or indicate when the preset torque is reached. The drive should be easily attached and detached remotely to the GM manipulator.

5.0 Acknowledgement

The authors acknowledge with thanks the valuable assistance received from the following Divisions of the Laboratory:

Engineering and Mechanical Division
Messrs. D. W. Cardwell, R. J. DeBakker, H. G. Duggan and D. M. Shepherd for technical advice, and for assistance in procuring facilities and services for the test operation.

Isotopes Division
Messrs. E. E. Beauchamp, E. Lamb, and R. W. Schaich for the use of their facilities and the assistance of their personnel in performing the test.

Solid State Division
Mr. S. E. Dismuke for briefing on remote handling devices and practices.

Reactor Projects Division
Mr. H. E. Penland for his patience and diligence in performance of the test operations.
6.0 Future Considerations

The information and practice gained in the performance of the reported test will be applied in the design of corollary tests. These tests will define and resolve problems in remote viewing, remote welding, system component design for remote handling, remote joining of piping elements, and system layout for remote maintenance.

Some work is now in progress in all of the test categories enumerated above, and it is intended that a report will be issued as soon as possible after the completion of a significant phase of any test.

Approved by

W. B. McDonald
Distribution

1. G. M. Adamson
2. S. E. Beall
3. A. Benson, AEC
4. D. S. Billington
5. R. E. Blanco
6. F. F. Blankenship
7. E. P. Bizzard
8. A. L. Boh
9. E. G. Bohmann
10. E. S. Bomár
11. C. J. Borkowski
12. W. F. Boudreau
13. G. E. Boyd
14. E. J. Breeding
15. J. C. Breese
16. R. B. Briggs
17. K. B. Brown
18. F. R. Bruce
19. D. W. Cardwell
20. W. R. Casto
21. C. E. Center
22. R. H. Chapman
23. R. A. Charpie
24. F. L. Culier
25. J. S. Culver
26. J. H. Devan
27. S. E. Dismuke
28. H. G. Duggan
29. W. K. Eister
30. L. B. Emlet
31. D. E. Ferguson
32. A. P. Fraas
33. E. A. Franco-Ferreira
34. J. H. Frye, Jr.
35. W. R. Gall
36. H. E. Goeller
37. W. R. Grimes
38. E. Guth
39. C. S. Harrill
40. H. W. Hoffman
41. A. Hollaender
42. W. S. Horneaker
43. A. S. Householder
44. W. H. Jordan
45. P. R. Kasteh
46. G. W. Kelholtz
47. M. T. Kelley
48. B. Kinyon
49. R. B. Korsmeyer
50. E. Lamb
51. J. A. Lane

52. W. H. Lewis
53. R. B. Lindauer
54. R. S. Livingston
55. R. N. Lyon
56. H. G. MacPherson
57. W. D. Manly
58. L. A. Mann
59. W. B. McDonald
60. C. K. McGlothlan
61. J. R. McNally
62. A. J. Miller
63. K. Z. Morgan
64. E. J. Murphy
65. J. P. Murray
66. M. L. Nelson
67. E. W. Parrish
68. P. Patriarca
69. A. M. Perry
70. M. Ramsey
71. F. Ring
72. A. F. Rupp
73. H. W. Savage
74. A. W. Savolainen
75. W. F. Schaffer
76. E. D. Shipley
77. O. Sisman
78. M. J. Skinner
79. A. H. Snell
80. I. Spiewak
81. E. Storto
82. J. A. Swartcut
83. A. Taboada
84. E. H. Taylor
85. D. S. Toomb
86. D. B. Trauger
87. W. E. Unger
88. A. M. Weinberg
89. C. E. Winters
90. G. D. Whitman
91. J. Zasler
92. Lab Records, ORNL (RC)
93-100. Lab Records Department
101-103. Document Reference Section
104-106. Central Research Library
107. W. R. Osborn
Figure 1 Cell Layout of Mechanical Arm and PK Pump
Figure 2 General Mills Mechanical Arm Manipulator
Figure 3 Viewing Pump Through Cell Window
Figure 4 View of Pump Through Cell Window
Figure 5 Viewing Manipulator Operations by Television
Figure 7 Model PK Molten Salt Pump
Figure 8 Model PK Molten Salt Pump with En Bloc Service Line Connections
Figure 9 Jigs and Fixtures used with the GM Manipulators
Figure 10 PK Pump Flange Bolting Method