Surface Deformation Behavior of BSTOA Ti-6Al-4V during Laser Shock Processing

PDF Version Also Available for Download.

Description

The surface of a beta solution treated and overaged (BSTOA) Ti-6Al-4V alloy specimen deformed by laser shock processing was studied using electron backscatter diffraction (EBSD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Slip steps were observed within grains oriented with their c-axis nearly parallel to the specimen surface normal. Based on the slip step traces and orientation information, the slip planes were determined to be (11{bar 2}2) for grains with their c-axis within 15{sup o} of the specimen surface normal and (11{bar 2}1) for grains with their c-axis between 15{sup o} and 40{sup o} away from the specimen ... continued below

Physical Description

PDF-file: 32 pages; size: 0 Kbytes

Creation Information

El-Dasher, B S; Zaleski, T M; Gray, J J; Rybak, S J & Chen, H July 21, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The surface of a beta solution treated and overaged (BSTOA) Ti-6Al-4V alloy specimen deformed by laser shock processing was studied using electron backscatter diffraction (EBSD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Slip steps were observed within grains oriented with their c-axis nearly parallel to the specimen surface normal. Based on the slip step traces and orientation information, the slip planes were determined to be (11{bar 2}2) for grains with their c-axis within 15{sup o} of the specimen surface normal and (11{bar 2}1) for grains with their c-axis between 15{sup o} and 40{sup o} away from the specimen surface normal. Although both these planes are known to belong to twinning systems, (11{bar 2}2)<11{bar 2}{bar 3}> and (11{bar 2}1)<11{bar 2}{bar 6}> respectively, the latter has not been observed to operate as a slip system. Examination of the Taylor factors associated with these slip systems shows that the grains with slip steps have the lowest Taylor factors. Determination of localized lattice rotations showed a unique behavior in grains with slip steps, such that all the lattice rotations were concentrated about the steps, with almost no orientation variations in between slip steps. This distribution indicates that stress concentrations exist at the slip steps, which could potentially affect the performance of the material.

Physical Description

PDF-file: 32 pages; size: 0 Kbytes

Source

  • Journal Name: Journal of Applied Physics; Journal Volume: 99; Journal Issue: 10

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-213934
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 884778
  • Archival Resource Key: ark:/67531/metadc874411

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 21, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 2, 2016, 2:44 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

El-Dasher, B S; Zaleski, T M; Gray, J J; Rybak, S J & Chen, H. Surface Deformation Behavior of BSTOA Ti-6Al-4V during Laser Shock Processing, article, July 21, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc874411/: accessed September 26, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.