The Community Climate System Model: CCSM3

PDF Version Also Available for Download.

Description

A new version of the Community Climate System Model (CCSM) has been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for atmosphere and land and a 1-degree grid for ocean and sea-ice. The new system incorporates ... continued below

Physical Description

PDF-file: 32 pages; size: 1.2 Mbytes

Creation Information

Collins, W D; Blackmon, M; Bitz, C; Bonan, G; Bretherton, C S; Carton, J A et al. December 27, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A new version of the Community Climate System Model (CCSM) has been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for atmosphere and land and a 1-degree grid for ocean and sea-ice. The new system incorporates several significant improvements in the scientific formulation. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land-atmosphere fluxes, ocean mixed-layer processes, and sea-ice dynamics. There are significant improvements in the sea-ice thickness, polar radiation budgets, equatorial sea-surface temperatures, ocean currents, cloud radiative effects, and ENSO teleconnections. CCSM3 can produce stable climate simulations of millenial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean-atmosphere fluxes in western coastal regions, the spectrum of ENSO variability, the spatial distribution of precipitation in the Pacific and Indian Oceans, and the continental precipitation and surface air temperatures. We conclude with the prospects for extending CCSM to a more comprehensive model of the Earth's climate system.

Physical Description

PDF-file: 32 pages; size: 1.2 Mbytes

Source

  • Journal Name: Journal of Climate, vol. 19, n/a, June 1, 2006, pp. 2122-2143

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-208789
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 892794
  • Archival Resource Key: ark:/67531/metadc874346

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 27, 2004

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 2, 2016, 10:17 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Collins, W D; Blackmon, M; Bitz, C; Bonan, G; Bretherton, C S; Carton, J A et al. The Community Climate System Model: CCSM3, article, December 27, 2004; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc874346/: accessed December 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.