Final Report: Impurity Transport in Tokamak Edge Plasmas

PDF Version Also Available for Download.

Description

The Plasma Theory and Simulation Group (PTSG) is collaborating with LLNL in order to model the edge region of a tokamak plasma and its interaction with the diverter plate. In the overall framework of the project, MHD will be used to model the bulk plasma. Near the edge, the MHD model will interface with the gyrokinetic code UEDGE developed at LLNL. Since the UEDGE model approximations may not be accurate within a few cyclotron radii of the diverter plate, the UEDGE code will interface with a collisional PIC-hybrid code developed by the PTSG under this project. The PTSG PIC code ... continued below

Physical Description

PDF-file: 3 pages; size: 100.7 Kbytes

Creation Information

Cohen, B I; Verboncoeur, J P & Hammel, J September 26, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The Plasma Theory and Simulation Group (PTSG) is collaborating with LLNL in order to model the edge region of a tokamak plasma and its interaction with the diverter plate. In the overall framework of the project, MHD will be used to model the bulk plasma. Near the edge, the MHD model will interface with the gyrokinetic code UEDGE developed at LLNL. Since the UEDGE model approximations may not be accurate within a few cyclotron radii of the diverter plate, the UEDGE code will interface with a collisional PIC-hybrid code developed by the PTSG under this project. The PTSG PIC code will include a self-consistent potential with kinetic or fixed hydrogen ions. The sputtering profile of the plate, under development at LLNL, will be used as input to the PIC code in order to correctly model the kinetic behavior of sputtered carbon. These carbon products will interact with hydrogen according to known chemistry cross-sections. While some kinetic electrons may be used to model the fast tail of the distribution function (if necessary), the bulk of the electron population will be modeled as being in thermal equilibrium using the Boltzmann relation, resulting in a significant improvement in code speed. Coulomb collisions may also be considered. The Boltzmann model has been implemented with various features in three of the PTSG codes: XPDP1 and OOPD1 (both 1d-3v), and OOPIC (2d-3v), according to the methodology of Cartwright [1]. When the model is fully implemented, it will include fluid interaction with the boundaries, energy conservation through the temperature term, and take into account collisions with the Boltzmann species. A more rigorous convergence analysis has been developed than is outlined in [1]; boundary effects are included explicitly in a formulation valid in arbitrary coordinate systems. In OOPD1, the Boltzmann model is included in an object-oriented manner as part of a general fluid model framework. The basic Boltzmann solver has been implemented and shown to give self-consistent results. The details and results were described in detail in a talk presented at LLNL (updated slides attached). Currently, the output of the three codes is being compared for a test case of a current-driven DC discharge. Computational speed-up and accuracy will be compared between PIC and the Boltzmann-PIC hybrid. A framework for general binary and three-body collisions is being developed for OOPD1. Given known cross-sections or reaction rates, this will function as a chemistry model for the code. The framework may then be imported into OOPIC.

Physical Description

PDF-file: 3 pages; size: 100.7 Kbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: UCRL-TR-215675
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/883742 | External Link
  • Office of Scientific & Technical Information Report Number: 883742
  • Archival Resource Key: ark:/67531/metadc874330

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 26, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 28, 2016, 3:42 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Cohen, B I; Verboncoeur, J P & Hammel, J. Final Report: Impurity Transport in Tokamak Edge Plasmas, report, September 26, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc874330/: accessed September 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.