QCD THERMODYNAMICS WITH AN ALMOST REALISTIC QUARK MASS SPECTRUM.

PDF Version Also Available for Download.

Description

We will report on the status of a new large scale calculation of thermodynamic quantities in QCD with light up and down quarks corresponding to an almost physical light quark mass value and a heavier strange quark mass. These calculations are currently being performed on the QCDOC Teraflops computers at BNL. We will present new lattice calculations of the transition temperature and various susceptibilities reflecting properties of the chiral transition. All these quantities are of immediate interest for heavy ion phenomenology.

Physical Description

5 pages

Creation Information

SCHMIDT, C. October 24, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We will report on the status of a new large scale calculation of thermodynamic quantities in QCD with light up and down quarks corresponding to an almost physical light quark mass value and a heavier strange quark mass. These calculations are currently being performed on the QCDOC Teraflops computers at BNL. We will present new lattice calculations of the transition temperature and various susceptibilities reflecting properties of the chiral transition. All these quantities are of immediate interest for heavy ion phenomenology.

Physical Description

5 pages

Source

  • PARTICLES AND NUCLEI INTERNATIONAL CONFERENCE (PANIC O5); SANTE FE, NEW MEXICO; 20051024 through 20051028

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--75647-2006-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 878156
  • Archival Resource Key: ark:/67531/metadc874307

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 24, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 12, 2016, 8:25 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

SCHMIDT, C. QCD THERMODYNAMICS WITH AN ALMOST REALISTIC QUARK MASS SPECTRUM., article, October 24, 2005; [Upton, New York]. (digital.library.unt.edu/ark:/67531/metadc874307/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.