Adaptive Urban Dispersion Integrated Model

PDF Version Also Available for Download.

Description

Numerical simulations represent a unique predictive tool for understanding the three-dimensional flow fields and associated concentration distributions from contaminant releases in complex urban settings (Britter and Hanna 2003). Utilization of the most accurate urban models, based on fully three-dimensional computational fluid dynamics (CFD) that solve the Navier-Stokes equations with incorporated turbulence models, presents many challenges. We address two in this work; first, a fast but accurate way to incorporate the complex urban terrain, buildings, and other structures to enforce proper boundary conditions in the flow solution; second, ways to achieve a level of computational efficiency that allows the models to ... continued below

Physical Description

PDF-file: 10 pages; size: 0 Kbytes

Creation Information

Wissink, A; Chand, K; Kosovic, B; Chan, S; Berger, M & Chow, F K November 3, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Numerical simulations represent a unique predictive tool for understanding the three-dimensional flow fields and associated concentration distributions from contaminant releases in complex urban settings (Britter and Hanna 2003). Utilization of the most accurate urban models, based on fully three-dimensional computational fluid dynamics (CFD) that solve the Navier-Stokes equations with incorporated turbulence models, presents many challenges. We address two in this work; first, a fast but accurate way to incorporate the complex urban terrain, buildings, and other structures to enforce proper boundary conditions in the flow solution; second, ways to achieve a level of computational efficiency that allows the models to be run in an automated fashion such that they may be used for emergency response and event reconstruction applications. We have developed a new integrated urban dispersion modeling capability based on FEM3MP (Gresho and Chan 1998, Chan and Stevens 2000), a CFD model from Lawrence Livermore National Lab. The integrated capability incorporates fast embedded boundary mesh generation for geometrically complex problems and full three-dimensional Cartesian adaptive mesh refinement (AMR). Parallel AMR and embedded boundary gridding support are provided through the SAMRAI library (Wissink et al. 2001, Hornung and Kohn 2002). Embedded boundary mesh generation has been demonstrated to be an automatic, fast, and efficient approach for problem setup. It has been used for a variety of geometrically complex applications, including urban applications (Pullen et al. 2005). The key technology we introduce in this work is the application of AMR, which allows the application of high-resolution modeling to certain important features, such as individual buildings and high-resolution terrain (including important vegetative and land-use features). It also allows the urban scale model to be readily interfaced with coarser resolution meso or regional scale models. This talk will discuss details of the approach and present results for some example calculations performed in Manhattan in support of the DHS Urban Dispersion Program (UDP) using some of the tools developed as part of this new capability.

Physical Description

PDF-file: 10 pages; size: 0 Kbytes

Source

  • Presented at: 86th American Meteorological Society Annual Meeting, Atlanta, GA, United States, Jan 29 - Feb 02, 2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-PROC-216813
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 886682
  • Archival Resource Key: ark:/67531/metadc874070

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 3, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 6, 2016, 6:47 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Wissink, A; Chand, K; Kosovic, B; Chan, S; Berger, M & Chow, F K. Adaptive Urban Dispersion Integrated Model, article, November 3, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc874070/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.