Improvement of electron beam quality in optical injection schemesusing negative plasma density gradients

PDF Version Also Available for Download.

Description

Enhanced electron trapping using plasma density down ramps as a method for improving the performance of laser injection schemes is proposed and analyzed. A decrease in density implies an increase in plasma wavelength, which can shift a relativistic electron from the defocusing to the focusing region of the accelerating wakefield, and a decrease in wake phase velocity, which lowers the trapping threshold. The specific method of two-pulse colliding pulse injector was examined using a three-dimensional test particle tracking code. A density down-ramp with a change of density on the order of tens of percent over distances greater than the plasma ... continued below

Creation Information

Fubiani, G.; Esarey, E.; Schroeder, C.B. & Leemans, W.P. July 26, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Enhanced electron trapping using plasma density down ramps as a method for improving the performance of laser injection schemes is proposed and analyzed. A decrease in density implies an increase in plasma wavelength, which can shift a relativistic electron from the defocusing to the focusing region of the accelerating wakefield, and a decrease in wake phase velocity, which lowers the trapping threshold. The specific method of two-pulse colliding pulse injector was examined using a three-dimensional test particle tracking code. A density down-ramp with a change of density on the order of tens of percent over distances greater than the plasma wavelength led to an enhancement of charge by two orders in magnitude or more, up to the limits imposed by beam loading. The accelerated bunches are ultrashort (fraction of the plasma wavelength, e.g., {approx}5 fs), high charge (>20 pC at modest injection laser intensity 10{sup 17} W/cm{sup 2}), with a relative energy spread of a few percent at a mean energy of {approx}25 MeV, and a normalized root-mean square emittance on the order 0.5 mm mrad.

Source

  • Journal Name: Physical Review E; Journal Volume: 73; Journal Issue: 2pt2; Related Information: Journal Publication Date: 02/2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--58354
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 878708
  • Archival Resource Key: ark:/67531/metadc874057

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 26, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Sept. 29, 2016, 2:53 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Fubiani, G.; Esarey, E.; Schroeder, C.B. & Leemans, W.P. Improvement of electron beam quality in optical injection schemesusing negative plasma density gradients, article, July 26, 2005; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc874057/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.