Diagnostic evaluation of power fade phenomena and calendar lifereduction in high-power lithium-ion batteries

PDF Version Also Available for Download.

Description

High-power Li-ion cells with graphite anodes and LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathodes that were cycled and stored at elevated temperatures showed a significant impedance rise and capacity fade, which were associated primarily with the LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathode. A combination of electrochemical, physical, and chemical diagnostic techniques, including Raman, SEM, and current-sensing AFM, was used to characterize the cathodes from these cells in order to produce a clear picture of the mechanism for cell degradation. Systematic Raman mapping of 50 x 80 {mu}m areas at 0.9 {mu}m spatial resolution produced semi-quantitative composition maps of cathode surfaces. Raman ... continued below

Creation Information

Kostecki, Robert & McLarnon, Frank May 1, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

High-power Li-ion cells with graphite anodes and LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathodes that were cycled and stored at elevated temperatures showed a significant impedance rise and capacity fade, which were associated primarily with the LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathode. A combination of electrochemical, physical, and chemical diagnostic techniques, including Raman, SEM, and current-sensing AFM, was used to characterize the cathodes from these cells in order to produce a clear picture of the mechanism for cell degradation. Systematic Raman mapping of 50 x 80 {mu}m areas at 0.9 {mu}m spatial resolution produced semi-quantitative composition maps of cathode surfaces. Raman microscopy surface composition maps and SEM images of cathodes from tested cells revealed that cell cycling or storage at elevated temperatures led to significant changes in the LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}/elemental-carbon surface concentration ratio. The loss of conductive carbon correlated with the power and capacity fade of the tested cathodes and the loss of surface electronic conductivity.

Source

  • NATO-CARWC Science for Peace, Argonne NationalLaboratroy, Argonne IL, October 19-24, 2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--55322
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 886824
  • Archival Resource Key: ark:/67531/metadc874047

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2004

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Sept. 30, 2016, 1:40 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kostecki, Robert & McLarnon, Frank. Diagnostic evaluation of power fade phenomena and calendar lifereduction in high-power lithium-ion batteries, article, May 1, 2004; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc874047/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.