Modeling Storm Water Runoff and Soil Interflow in a Managed Forest, Upper Coastal Plain of the Southeast US.

PDF Version Also Available for Download.

Description

The Forest Service-Savannah River is conducting a hectare-scale monitoring and modeling study on forest productivity in a Short Rotation Woody Crop plantation at the Savannah River Site, which is on Upper Coastal Plain of South Carolina. Detailed surveys, i.e., topography, soils, vegetation, and dainage network, of small (2-5 ha) plots have been completed in a 2 square-km watershed draining to Fourmile Creek, a tributary of the Savannah River. We wish to experimentally determine the relative importance of interflow on water yield and water quality at this site. Interflow (shallow subsurface lateral flow) can short-circuit rainfall infiltration, preventing deep seepage and ... continued below

Physical Description

1-12

Creation Information

Callahan, T.J.; Cook, J.D.; Coleman, Mark D.; Amatya, Devendra M. & Trettin, Carl C. August 1, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 18 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Savannah River Forest Station
    Publisher Info: USDA Forest Service, Savannah River, New Ellenton, SC
    Place of Publication: New Ellenton, South Carolina

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Forest Service-Savannah River is conducting a hectare-scale monitoring and modeling study on forest productivity in a Short Rotation Woody Crop plantation at the Savannah River Site, which is on Upper Coastal Plain of South Carolina. Detailed surveys, i.e., topography, soils, vegetation, and dainage network, of small (2-5 ha) plots have been completed in a 2 square-km watershed draining to Fourmile Creek, a tributary of the Savannah River. We wish to experimentally determine the relative importance of interflow on water yield and water quality at this site. Interflow (shallow subsurface lateral flow) can short-circuit rainfall infiltration, preventing deep seepage and resulting in water and chemical residence times in the watershed much shorter than that if deep seepage were the sole component of infiltration. The soil series at the site (Wagram, Dothan, Fuquay, Ogeechee, and Vaucluse) each have a clay-rich B horizon of decimeter-scale thickness at depths of 1-2 m below surface. As interflow is affected by rainfall intensity and duration and soil properties such as porosity, permeability, and antecedent soil moisture, our calculations made using the Green and Ampt equation show that the intensity and duration of a storm event must be greater than about 3 cm per hour and 2 hours, respectively, in order to initiate interflow for the least permeable soils series (Vaucluse). Tabulated values of soil properties were used in these preliminary calculations. Simulations of the largest rainfall events from 1972-2002 data using the Green and Ampt equation provide an interflow: rainfall ratio of 0 for the permeable Wagram soil series (no interflow) compared to 0.46 for the less permeable Vaucluse soil series. These initial predictions will be compared to storm water hydrographs of interflow collected at the outflow point of each plot and refined using more detailed soil property measurements.

Physical Description

1-12

Source

  • 2004 ASAE/CSAE Annual International Meeting Sponsored by ASAE/CSAE Fairmont Chateau Laurier, The Westin, Government Centre Ottawa, Ontario, Canada 1 - 4 August 2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: na
  • Grant Number: AI09-00SR22188
  • Office of Scientific & Technical Information Report Number: 889475
  • Archival Resource Key: ark:/67531/metadc873941

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 2004

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 1, 2016, 6:21 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 18

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Callahan, T.J.; Cook, J.D.; Coleman, Mark D.; Amatya, Devendra M. & Trettin, Carl C. Modeling Storm Water Runoff and Soil Interflow in a Managed Forest, Upper Coastal Plain of the Southeast US., article, August 1, 2004; New Ellenton, South Carolina. (digital.library.unt.edu/ark:/67531/metadc873941/: accessed October 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.