RHQT Nb3Al 15-Tesla magnet design study

PDF Version Also Available for Download.

Description

Feasibility study of 15-Tesla dipole magnets wound with a new copper stabilized RHQT Nb{sub 3}Al Rutherford cable is presented. A new practical long copper stabilized RHQT Nb{sub 3}Al strand is presented, which is being developed and manufactured at the National Institute of Material Science (NIMS) in Japan. It has achieved a non-copper J{sub c} of 1000A/mm{sup 2} at 15 Tesla at 4.2K, with a copper over non-copper ratio of 1.04, and a filament size less than 50 microns. For this design study a short Rutherford cable with 28 Nb{sub 3}Al strands of 1 mm diameter will be fabricated late this ... continued below

Physical Description

4 pages

Creation Information

Yamada, R.; Ambrosio, G.; Barzi, E.; Kashikin, V.; Kikuchi, A.; Novitski, I. et al. September 1, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Feasibility study of 15-Tesla dipole magnets wound with a new copper stabilized RHQT Nb{sub 3}Al Rutherford cable is presented. A new practical long copper stabilized RHQT Nb{sub 3}Al strand is presented, which is being developed and manufactured at the National Institute of Material Science (NIMS) in Japan. It has achieved a non-copper J{sub c} of 1000A/mm{sup 2} at 15 Tesla at 4.2K, with a copper over non-copper ratio of 1.04, and a filament size less than 50 microns. For this design study a short Rutherford cable with 28 Nb{sub 3}Al strands of 1 mm diameter will be fabricated late this year. The cosine theta magnet cross section is designed using ROXIE, and the stress and strain in the coil is estimated and studied with the characteristics of the Nb{sub 3}Al strand. The advantages and disadvantages of the Nb{sub 3}Al cable are compared with the prevailing Nb{sub 3}Sn cable from the point of view of stress-strain, J{sub c}, and possible degradation of stabilizer due to cabling. The Nb{sub 3}Al coil of the magnet, which will be made by wind and react method, has to be heat treated at 800 degree C for 10 hours. As preparation for the 15 Tesla magnet, a series of tests on strand and Rutherford cables are considered.

Physical Description

4 pages

Source

  • Presented at 7th European Conference on Applied Superconductivity, Vienna, Austria, 11-15 Sep 2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-CONF-05-425-TD
  • Grant Number: AC02-76CH03000
  • Office of Scientific & Technical Information Report Number: 891087
  • Archival Resource Key: ark:/67531/metadc873906

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 1, 2016, 4:44 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Yamada, R.; Ambrosio, G.; Barzi, E.; Kashikin, V.; Kikuchi, A.; Novitski, I. et al. RHQT Nb3Al 15-Tesla magnet design study, article, September 1, 2005; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc873906/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.