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1. Introduction 

The term ‘validation’ has been the subject of literature debate for more than a decade. Some 

skeptics argue the term should not be used, as it implies correctness and accuracy for a 

groundwater model, which no one can claim. Similarly, others believe it is impossible to validate 

a groundwater numerical model because such a claim would assert a demonstration of truth that 

can never be attained for the approximate solutions to subsurface problems (Oreskes et al., 

1994). Anderson and Bates (2001) edited a book covering the issue of model validation in 

hydrological sciences. Some of the quotes they presented from the skeptics and opponents to the 

use of the term “validation” include: 

“Absolute validity of a model is never determined” (National Research Council, 1990).  

“What is usually done in testing the predictive capability of a model is best characterized as 

calibration or history matching; it is only a limited demonstration of the reliability of the model. 

We believe the terms validation and verification have little or no place in groundwater science; 

these terms lead to a false impression of model capability. More meaningful descriptors of the 

process include model testing, model evaluation, model calibration, sensitivity testing, 

benchmarking, history matching, and parameter estimation” (Konikow and Bredehoeft, 1992). 

 The above views consider validation in the strictest definition of the word. That is, they refer to 

validation as a demonstration of the accuracy of the model in representing the true system and 

they warn against misconception of the public about the meaning of the term. As discussed in 

Hassan (2004a), most models, if not all, are not being used to reveal the truth of a system (an 

objective they simply cannot achieve). Models are in many cases decision-making tools. When a 

model successfully passes a rigorous development, calibration, and testing process, it becomes a 
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reasonable decision-making tool, often the best available for subsurface problems that demand 

answers now. The model validation process can be regarded as an additional filter for 

independent model evaluation to assess the suitability of a model for its given purpose (likely to 

be decision-making). Most of the literature debate focuses on validation terminology and not on 

the process. No one argues the process is unimportant, unneeded, or useless and no one disagrees 

with the concept of using an independent data set to test the model. The disagreement is with 

what to call it and what the implications are for the term.  

This lack of focus on development of model validation processes or tools is reflected clearly in 

Vogel and Sankarasubramanian’s (2003) discussion about the validation of watershed models. 

“When one considers the wide range of watershed models and the heavy emphasis on their 

calibration (Duan et al., 2003), it is surprising how little attention has been given to the problem 

of model validation. In three recent reviews of watershed modeling (Singh, 1995; Hornberger 

and Boyer, 1995; Singh and Woolhiser, 2002) and watershed model calibration (Duan et al., 

2003), there was little attention given to developments in the area of model validation. Although 

there is rough agreement on the goal of model validation, no agreement exists on a uniform 

methodology for executing model validation.” 

There is an urgent need for a model validation process that can be used to evaluate model 

performance and build confidence in a model’s suitability for making decisions. This confidence 

building is a long-term iterative process and it is the author’s belief that this process is what 

should be termed model validation. Model validation is a process not an end result. That is, the 

process of model validation cannot always assure acceptable model predictions or quality of the 

model. Rather, it provides a safeguard against faulty models or inadequately developed and 

tested models. If model results end up being used as the basis for decision-making, then the 
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validation process indicates the model is valid for making decisions (not necessarily an absolute 

representation of truth). 

Again, such a process should not be viewed as a mechanism for proving that the model is valid, 

but rather as a mechanism for enhancing the model, reducing its uncertainty, and improving its 

predictions through an iterative, long-term confidence-building process. The process should 

contain trigger mechanisms that will drive the model back to the characterization-

conceptualization-calibration-prediction stage (i.e., back to the beginning), but with a better 

understanding of the modeled system. 

Following this introduction, a brief review of practical definitions of the term ‘validation’ is 

presented in Section 2. A description of a proposed model validation process for stochastic 

groundwater models (Hassan, 2004b) is presented in Section 3. The details of this process will 

not be repeated here; rather,  more explanation and discussion of some of the challenging aspects 

of the process will be addressed as they apply to two actual field sites: the Project Shoal Area 

(PSA) in Nevada and the Amchitka site in Alaska. In particular, two main aspects are 

highlighted: 1) the selection of the acceptance criteria for the stochastic model realizations for 

the PSA, presented in Section 4, and 2) the evaluation of model input parameters and the 

reduction of their uncertainty at Amchitka, presented in Section 5. A wrap-up and concluding 

remarks are presented in Section 6.   

2. Practical Views of Validation 

Refsgaard (2001) defines model validation as the process of demonstrating a given site-specific 

model is capable of making accurate predictions for periods outside a calibration period. He also 

states that a model is said to be validated if its accuracy and predictive capability in the 

validation period have been proven to lie within acceptable limits or errors. De Marsily et al. 
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(1992) argue that using a model in a predictive mode and comparing it with new data does not 

(and does not have to) prove the model is correct for all circumstances; it only increases the 

confidence in the model’s value. They added, “We do not want certainty; we will be satisfied 

with engineering confidence.” 

Neuman (1992) defines the validation of safety assessment models as the process of building 

scientific confidence in the methods used to perform such assessment. However, he recognizes 

that this confidence-building approach to validation is possibly open-ended, as many iterations 

between modelers and regulators may be needed. Eisenberg et al. (1994) support the idea of 

confidence building and indicate this term recognizes that full scientific validation of models of 

performance assessment may be impossible and the acceptance of mathematical models for 

regulatory purposes should be based on appropriate testing, which will lead to a reasonable 

assurance that the results are acceptable. Hassanizadeh (1990) differentiates between research (or 

analysis) model validation and safety assessment modeling (or predictive modeling) validation. 

The former is a tool to help understand processes, uncertainties, etc., whereas the latter is a goal 

to help the decision-making process. Sargent (1990) regards validation as a process that consists 

of performing tests and evaluations during model development until sufficient confidence is 

obtained that a model can be considered valid for its intended application.  

There is a general consensus that the main concern is whether or not a model is adequate for its 

intended use and whether or not there is sufficient evidence that the model development followed 

logical and scientific approaches and did not fail to account for important features and processes. 

It should be noted that determining the adequacy of a model or building confidence in its 

prediction is not ideally a one-time exercise. It can be considered an iterative process that should 

be viewed as part of an integral loop with trigger mechanisms or decision points that force the 
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model back to the data collection-conceptualization-calibration-prediction phase loop if the 

model validation process indicates the need to do so. Key to this process is the use of a diverse 

set of tests that should be designed to evaluate a diverse set of aspects related to the model. 

It is clear that often-quoted statements such as “groundwater models cannot be validated” and 

“groundwater models can only be invalidated” (Konikow and Bredehoeft, 1992, 1993; 

Bredehoeft and Konikow, 1992, 1993) refer to validation in only the strictest sense, responding 

to a concern regarding layman’s possible misconceptions. Unfortunately, such statements may 

lead to a relaxed attitude on the part of researchers, consultants, and even regulatory agencies 

when it comes to evaluating model predictions. With the perception that the groundwater model 

will never be validated, there may be a temptation to believe good model development, building, 

and calibration are sufficient and nothing more can be done. All groundwater modelers agree that 

their models cannot be validated in the strictest sense (at least with present-day technology) but 

similarly agree on the importance of post-prediction testing and evaluation. By expanding the 

definition of validation to encompass a long-term process of confidence building, modelers and 

model users can develop rigorous validation processes that will ultimately improve the models 

and the quality of decisions based on those models.  

3. The Proposed Model Validation Process 

Hassan (2004b) proposed an approach for the validation process of stochastic numerical models. 

The details of the process will not be repeated here; rather, more explanation and discussion of 

some of the challenging aspects of the process will be addressed as they apply to two actual field 

sites. However, for completeness, the overall validation approach is briefly discussed in the 

following.  
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The validation process is designed to account for the stochastic nature of some groundwater 

models. The focus of the process is centered around the following three main themes: (1) testing 

if predictions of numerical groundwater models and the underlying conceptual models are robust 

and consistent with regulatory purposes, (2) improving model predictions and reducing 

uncertainty using data collected through field activities designed for model validation, and (3) 

linking validation efforts to long-term monitoring and management of the site. 

Figure 1, adapted from Hassan (2004b), displays the step-by-step approach for performing the 

validation and postaudit processes for a typical stochastic groundwater model. The proposed 

steps of the model validation process are described below. 

Step 1:  Identify the data needed for validation, the number and location of the wells, and the 

type of laboratory or field experiments needed. Well locations can be determined based on 

the existing model and should favor locations likely to encounter fast migration pathways.  

Step 2:  Install the wells and collect the largest amount of data possible from the wells. The 

data should include geophysical logging, head measurements, conductivity measurements, 

contaminant concentrations, and any other information that could be used to test the model 

structure, input, or output. 

Step 3:  Perform different validation tests to evaluate various components of the model. The 

stochastic validation approach proposed by Luis and McLaughlin (1992) is an example of an 

approach that can be used to test the flow model output (heads) under saturated conditions. 

Other goodness-of-fit tests can be used for the heads to complement this stochastic approach. 

The philosophy here is to test each individual realization with as many diverse tests (in terms 

of the statistical nature of the test and the tested aspect of the model) as possible and have a 
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quantitative measure of the adequacy of each realization in capturing the main features of the 

modeled system. It is important to note that goodness-of-fit results and other statistical results 

for the current realization will be used after analyzing all realizations to obtain some of the 

acceptance criteria measures, P1 through P5, which are discussed in detail in Section 4. 

Step 4: Link the results of the calibration accuracy evaluations performed during the model 

building stage and the validation tests (step 3) for all realizations and sort the realizations in 

terms of their adequacy and closeness to the field data. A subjective element may be invoked 

in this sorting based on expert judgment and hydrogeologic understanding. The objective 

here is to filter out the realizations that show a major deviation in many of the tested aspects 

and focus on those that “passed” the majority of the tests. By doing so, the range of output 

uncertainty is reduced and the subsequent effort can be focused on the most representative 

realizations/scenarios. To continue reducing the uncertainty level, a refinement of the 

conductivity or other input distribution can be made based on information collected from the 

validation wells as presented in Section 5 for the Amchitka site.  

Step 5: Step 4 results will determine the subsequent step and guide the decision of whether 

there is a sufficient number of realizations with high scores or not.  

5a. If the number of realizations with high scores is very small compared to the total number 

of model realizations (the P1 measure discussed in Section 4), it could be an indication 

that the model has a major deficiency or conceptual problem or it could be that the input 

is not correct. In the latter case, the model may be conceptually good, but the input 

parameter distributions are skewed one way or another. Generating more realizations and 

keeping those fitting the validation criteria can shift the distribution to the proper 
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position. This can be done using the existing model without conditioning or using any of 

the new validation data. If the model has a major deficiency or conceptual problem, 

generating additional realizations will not correct it and continued failure per the 

validation criteria will be obvious. The importance of the distinction between 

conceptualization problems and inappropriate input distributions has been discussed by 

Bredehoeft (2003). He states one should carefully ask the question of whether the 

mismatch between the model and the field observations is a result of poor parameter 

adjustments or does it suggest we rethink the conceptual model. The use of different 

metrics such as P1 and P2 discussed in Section 4 provides a tool for making this 

distinction. 

5b. If the number of realizations with high scores is found sufficient, this indicates the model 

does not have any major deficiencies or conceptual problems. Based on the realizations 

retained in the analysis and deemed acceptable, the regulatory quantity of interest can be 

calculated and compared to the original model-predicted quantity. This comparison will 

be presented for reference by decision makers in step 6. 

Step 6:  Once the model performance has been evaluated per the acceptance criteria, the 

model sponsors and regulators have to answer the last question in Figure 1. This question 

will determine whether the validation results meet the regulatory objectives or not. This is the 

trigger point that could lead to significant revision of the original model. 

6a. If the answer to the question is no, then the left-hand side path in Figure 1 begins, and a 

new iteration of model development will begin using the original data plus data collected 

for validation. Steps 1 to 6 will eventually be repeated.  
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6b. If the answer to the question is yes, validation is deemed sufficient and the model is 

considered adequate or robust and the process proceeds to step 7, which starts the 

development of the long-term monitoring program for the site.  

It can be seen and expected that the process of validating a site-specific groundwater model is 

not an easy one. Throughout the structured process described above, there may be a desire to 

confirm that the work is on the right track. The way to this confirmation is the cumulative 

knowledge gained from the different stages of the validation process. That is, a set of 

independent tests and evaluations will provide knowledge about the model performance, and the 

test results will provide some incremental, but additive, pieces of information that will be of 

importance. While there are no guarantees of success (attaining a conclusive outcome about 

model performance), the combined presence of these different results and evaluations sharply 

improves the odds that one can make a good decision about the model performance. 

Two aspects of the validation process are explained in detail in the following subsections. These 

are 1) the criteria for determining the sufficiency of the number of acceptable realizations, which 

are demonstrated for the Project Shoal Area (PSA) model, and 2) the reduction of uncertainty of 

model input parameters, which is demonstrated for the Amchitka model. Other aspects of this 

validation approach need further analysis and development. The work on developing a model 

validation process is still in its infancy and the hope is that more attention will be devoted to the 

development of rigorous approaches for conducting groundwater model validation processes.  

4. Acceptance Criteria for Stochastic Model Realizations and Application to PSA Model 

The PSA, about 50 km southeast of Fallon, Nevada, is the location of the Shoal underground 

nuclear test. The nuclear device was emplaced 367 m below ground surface, about 65 m below 
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the water table, in fractured granite. Details of the geology and hydrogeology of the site are 

provided in Pohll et al. (1999).  

Ongoing environmental remediation efforts at the PSA have successfully progressed through 

numerous technical challenges related to the substantial uncertainties present when 

characterizing a heterogeneous subsurface environment. The original Corrective Action 

Investigation Plan (CAIP) for the PSA described the drilling and testing of four characterization 

wells, followed by flow and transport modeling. The data analysis and the first modeling effort 

are described in Pohll et al. (1999). After evaluating the modeling effort, the model sponsor 

determined the degree of uncertainty in transport predictions for PSA remained unacceptably 

large. Thus, a second CAIP was developed prescribing a rigorous analysis of uncertainty in the 

PSA model and quantification of methods for reducing uncertainty by collecting additional data. 

This analysis formed the basis for a second major characterization effort, where four additional 

characterization wells were drilled during summer and fall 1999. A key component of the second 

field program was a tracer test conducted between two of the new four wells, which is described 

in Reimus et al. (2003). 

Results of the tracer test and new characterization efforts produced a new groundwater flow and 

radionuclide transport model that was approved by the model sponsor and regulators (Pohlmann 

et al. 2004). The next step in the environmental management of the PSA is to start the validation 

process and develop the long-term monitoring network. This section focuses on the selection of 

acceptance criteria and how they can be applied in the PSA model. An attempt is made to 

develop and test some acceptance criteria to be used through the model validation process. It is 

important to note that this analysis is still in the development stage and the application here is 
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made for hypothetical cases (i.e., hypothetical validation data). Field data will be collected for 

the validation process of the PSA model at the time this book will be in press.  

4.1. Proposed Acceptance Criteria for PSA 

According to the validation approach shown in Figure 1, the first set of analyses using the field 

data collected for validation purposes will yield results that will be evaluated to determine the 

path forward. The first “if” statement in the validation approach pertains to whether a sufficient 

number of realizations attained satisfactory scores on how they represent the field data used for 

calibration (old) and validation (new). The determination of whether a sufficient number exists 

will be based on five criteria with the decision made in a hierarchical manner as will be 

discussed later. The five criteria are summarized below. 

1. Individual realization scores (Sj, j = 1, …, number of realizations), obtained based on how 

well each realization fits the validation data, will be evaluated. The first criterion then 

becomes the percentage of these scores, P1, that exceeds a certain reference value. 

2. The number of validation targets where field data fit within the inner 95% of the probability 

density function (pdf) of these targets as used in the model is the second criterion, P2. 

3. The results of hypothesis testing to be conducted using the stochastic perturbation approach 

of Luis and McLaughlin (1992) as described in detail in Hassan (2004b), P3 , represent the 

third criterion.  

4. The results of linear regression analysis and other hypothesis testing (e.g., testing error 

variance based on calibration data and based on validation data) that could be feasible 

(depending on the size of data set obtained in the field), P4, are considered the fourth 

criterion.  
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5. The results of the correlation analysis where the log-conductivity variance is plotted against 

the head variance for the targeted locations and the resulting plot for the model is compared 

against the field validation data, P5.  

The hierarchical approach to make the above determination is described by a decision tree. This 

decision tree for the acceptance of the realizations and for passing the first decision point on the 

validation approach is shown in Figure 2. First, Sj is evaluated to determine whether the 

percentage of realizations with scores above the reference value, P1, is more than 40%, between 

30% and 40%, or less than 30%. If the number is more than 40%, it is deemed sufficient. If it is 

between 30% and 40% or less than 30%, the second criterion, P2, is used as shown in Figure 2.  

The second criterion represents the number of validation targets where the field data lie within 

the inner 95% of the pdf for that target as used in (input) or produced by (output) the model. 

Then if P1 is between 30% and 40% and P2 is between 40% and 50% or if P1 is less than 30% 

but P2 is greater than 50%, the number of realizations is deemed sufficient. If P1 is less than 30% 

and P2 is less than 40%, then the remaining three measures, P3, P4, and P5, are used to determine 

whether the model needs revision or whether more realizations can be generated to replace some 

of the current realizations. In this latter case, the model may be conceptually good but the input 

parameter distribution is skewed or inappropriate and by generating more realizations and 

keeping the ones fitting the above criteria, the distribution attains the proper position. This can be 

done using the existing model without conditioning or using any of the new validation data (i.e., 

no additional calibration). The rationale for selecting the above thresholds (30% to 40% for P1 

and 40% to 50% for P2) is described through an example and when these metrics are evaluated 

with statistical hypothesis testing later in this Section. 
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4.2 Single Validation Target Illustration 

The first criterion is to compute the number of realizations with scores Sj above a reference 

value. To demonstrate how this reference value is computed, assume there is only one validation 

target (e.g., the head measurement in one interval in a well). Figure 3 shows the head distribution 

as produced by the stochastic PSA model where the triangles represent the 2.5th, 50th, and 97.5th 

percentiles and the circle indicates a hypothesized field measurement, ho. The reference value 

and the score for any individual realization for this simple case can be computed as 
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where j is the realization index and it varies from 1 to NMC (number of Monte Carlo 

realizations) with NMC being 1,000 realizations for the PSA model. This leads to all realizations 

with absolute errors smaller than min{(|ho – h2.5|) , (|ho – h97.5|)}, attaining a score higher than the 

reference value. Figure 4 below shows the resulting scores and how they compare to the 

reference value, RV as obtained from the above equations.  
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It can be seen from Equations (1) through (3) that the maximum value RV or Sj can attain is 1.0. 

Thus if the observed value, ho, is equivalent to the 2.5th or the 97.5th value, P1 becomes zero 

because RV becomes 1.0 and all Sj values will be less than 1.0. Also, if the observed value is 

found to be less than h2.5 or greater than h97.5, P1 will be automatically set to zero. In such cases, 

one may conclude the model output is skewed toward higher or lower values than indicated by 

field data. However, this does not necessarily indicate conceptual problems and it may be an 

indication of incorrect input parameter distributions. The other tests and evaluations can help 

identify the reasons for this output skewness. When the measured value coincides with the 50th 

percentile of the target output, h50, then P1 will be approximately 95% indicating that 95% of the 

realizations attained scores higher than RV.  

4.3. Testing the Efficacy of P1 for a Single Validation Target  

To investigate the P1 metric for the case of a single validation target, a distribution form for the 

model output is assumed. For simplicity, it is assumed that the model predictions follow a 

standard normal distribution with zero mean and unit variance, so h50 = 0.0, h2.5 = -1.96, and  

h97.5 = 1.96. The performance of this metric is tested for a range of measurement values 

(hypothesized values for the single field data point) between –10.0 and +10.0. For each one of 

these hypothesized values, the RV can be obtained according to Equation (1) and the results are 

shown in Figure 5. The RV metric decreases rapidly as the observation value approaches the 

median, h50. When the measured value lies outside the middle 95% of the output distribution 

(i.e., outside the range [-1.96, 1.96]), RV is not computed since P1 becomes zero. Also, as shown 

in the figure, when ho equals –1.96 (h2.5) or 1.96 (h97.5), RV equals 1.0. Due to the exponential 

form in Equation (2), all Sj values will be less than 1.0 resulting in a zero value for P1 when ho is 

at the 2.5th or 97.5th percentile.  



 17

The next step is to calculate the Sj score for each Monte Carlo realization, with Sj being a similar 

measure to the RV, but using individual realization predictions for the head. The Sj score is 

compared to the RV score and the relative number of Sj values that exceed the RV are tallied to 

obtain P1. The Sj values and the corresponding P1 value were tallied for a range of single 

observation values in the range [-10, 10] as shown in Figure 6. 

Figure 6 also compares the P1 metric to the t-distribution with one degree of freedom. The          

t-distribution is commonly used to test the statistical differences among means when the variance 

of the distribution is not known. The distribution plotted with green in the figure simply shows 

the value of the significance level, α, at which each observation on the range [–10, 10] would be 

rejected in a hypothesis evaluating the statistical difference between the mean of the model 

output (assumed standard normal distribution) and each observed value (assuming each observed 

value represents a distribution with only one [n = 1] sample). The one-degree of freedom used in 

this plot is not exactly correct as the degrees of freedom are actually n - 1 = 0.  

To avoid this limitation, the Z test, which is commonly used for the same purpose, but it assumes 

the variances of the distributions are known, is employed. It is assumed that each observation is a 

mean of a normal distribution and each output realization represents a mean of a normal 

distribution. For each observation value, the following hypothesis is tested: 
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Then the proportion of Monte Carlo realizations where the null hypothesis, H0, above is not 

rejected is plotted against each observation value as shown with the red line in Figure 5.  
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The plots in Figure 6 provide an indication of how the P1 test compares against standard 

statistical tests. According to the figure, one would accept all model realizations for any of the 

observed values [-10, 10] based on the student t-test. In other words, if the t-test is used, one 

would not reject any of the model realizations until approximately the absolute value of the 

observation is well above 10 (at the 95% confidence level). On the other hand, the P1 measure 

and the Z-test both indicate decreasing proportions of acceptable realizations as one deviates 

from the median of the model output distribution which is zero in this test case. At the 5% 

significance level and if the observed value coincides with the median of the model output, only 

95% of the realizations are deemed acceptable using the P1 measure and the Z test. When the 

observed value deviates from the median, the proportion of acceptable realizations drops faster 

using the P1 measure compared to the Z test. For example, 40% or more of the model realizations 

would be accepted using the Z test for any observation value in the range [-2.22, 2.22], whereas 

the P1 measure gives this level of acceptance for a narrower range of observation values [-1.07, 

1.07]. 

At first glance, it appears that the two methods (the P1 measure versus the Z-test or the t-test) are 

in large disagreement. But Type I error (rejecting a model realization when in fact it is a good 

one) versus Type II error (accepting a poor model realization) must be considered. The P1 metric 

is essentially reducing Type II error at the expense of Type I error. As discussed by Sargent 

(1990), the probability of Type I error is called model builder’s risk, whereas the probability of 

Type II error is called model user’s risk, and in model validation, model user’s risk is extremely 

important and must be kept small. As a result, it is believed that the restrictiveness of the P1 

measure helps minimize Type II error and thus reduce the model user’s risk (both model sponsor 
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and regulators) at the expense of increasing model builder’s risk (supposedly the research team 

constructing the model). 

4.4 Multiple Validation Targets Illustration 

For the general case of having N validation targets, the above equations should be modified to 

account for these different validation targets. In this case, the RV and the individual scores, Sj, 

will depend on the sum of squared deviations between each observation, ho, and the 

corresponding h2.5 or h97.5. The equations thus become 
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For demonstration purposes and as an example, assume the hypothetical case that data are 

collected on 18 validation targets. These, for example, could be conductivity data in three wells, 

three measurements each (i.e., 9 intervals) and head data for the same intervals. For each one of 

these targets, the current stochastic PSA model provides a distribution of values. It is then 

assumed that the values of the field data are known (one realization is chosen at random to 

provide an example observation for all targets.) Figures 7 and 8 show the results of this example 

(Example 1) where P1 is found to be about 76.7%. In this case, there is no check for P2 and the 

sufficiency of the number of realizations having acceptable scores is accepted. Note, however, 

that if P2  were checked, it would be about 94% (=17/18) because 17 data points lie between the 

2.5th and the 97.5th percentiles for the corresponding targets.  

Using another set of random values to hypothesize the field data, a different result is obtained as 

shown in Figures 9 and 10 for Example 2. In this case, both P1 and P2 are less than 40% (since 
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the number of validation targets where the red circle is between the 2.5th and the 97.5th 

percentiles is only 2 ~ 11%). In this case, the additional hypothesis tests and linear regression 

evaluations will be performed to assert whether the model needs to be revised or if the parameter 

distributions need to be modified.  

 

In example 1 above, the field data values are hypothesized to be equivalent to one of the model 

realizations. That is, the values of the 18 validation targets are obtained from one single 

realization and assumed to represent field data collected for the validation analysis. In spite of 

assuming field values exactly matching one of the model realizations, the P1 metric was found to 

be about 76.7%. This value is obviously dependent on which realization is selected. Therefore, 

the above example was repeated 1,000 times with each of the model realizations assumed to 

represent the field data in one of those times (similar to a jackknife method). The P1 metric is 

obtained for these 1,000 experiments and its mean value was found to be about 43%. Given the 

actual field data to be collected for the validation analysis are very unlikely to exactly match any 

of the PSA model realizations, the 30% to 40% threshold for P1 is considered realistic. In other 

words, if one, on average, obtains 43% for P1 when one of the model realizations is assumed to 

match real field conditions, one can safely assume the model conceptually valid if P1 is between 

30% and 40% when using the actual validation data. 

4.5. Testing the Efficacy of P1 for Multiple Validation Targets  

A numerical experiment is performed to evaluate the P1 metric for the case of multiple validation 

targets. The experiment is run as follows: 

1. A model is assumed to produce multiple outputs, each following a standard normal 

distribution with zero mean and unit variance. 



 21

2. To test the sensitivity of the P1 metric, 30 observations are randomly selected, with the 

mean value of the observation set being constant. A range of observation set means is 

used to determine at what point the model will be rejected.  The mean of each 

observation set is tested over the range – 4.0 to 4.0 (i.e. – 4.0, –3.9, ..., 4.0). 

3. For each mean value, 30 observations are randomly drawn from a normal distribution 

with the mean equal to the current mean value (i.e., – 4.0, – 3.9, …, 4.0) and a standard 

deviation = 1.0. 

4. The RV value for the 30 validation targets is computed using Equation (5). 

5. For each observation mean, the scores Sj for 10,000 realizations of a model (model is 

assumed to be standard normal) are computed and the metric P1 is obtained according to 

Equation (3). 

6. Steps 3 through 5 are then repeated for each observation mean in the range [– 4.0, 4.0]. 

 

The purpose of this experiment is to determine the point at which a model will be considered 

invalid. Each observation set represents data that are either close to the model predictions (i.e. 

mean values close to zero), or poor fitting, with mean values far away from zero. This 

experiment allows us to compare the rejection region by using a simple hypothesis test (i.e., Z-

test) versus the P1 measure. 

Due to the random nature of the distributions generated in the above procedure, the above 

experiment was repeated 100 times and the average results are shown in Figure 11. The blue dots 

in the figure represent the results for the P1 metric, the red line shows the results of the Z test that 
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is similar to the test conducted for the single validation target case, the magenta line represents 

the mean value (of 100 values) of the P1 metric at each observation mean, and the black line 

represent a normal distribution that best fits the P1 results. 

For the Z test, we assume each output realization represent a mean of a normal distribution. For 

each observation mean value, we then test the following hypothesis: 
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                                                   (7) 

Then the proportion of Monte Carlo realizations (assumed 10,000 in this experiment) where the 

null hypothesis, H0, above is not rejected is plotted against each observation mean as shown with 

the red line in Figure 11. According to the figure, the t test would suggest accepting all model 

realizations if the mean value of the observations is inside the range [–2.2, 2.2] at 95%. The P1 

criterion has a narrower acceptance region ([–1.6, 1.6] according to the black or magenta line) 

again suggesting the P1 metric is overemphasizing (i.e., trying to reduce) Type II error. 

Therefore, the P1 criterion is more stringent than typical hypothesis tests and provides a useful 

method to test multiple validation targets, which is a more difficult task with standard hypothesis 

test procedures. 

It is important to note that according to P1 and the Z test, decreasing proportions of acceptable 

realizations are obtained as one deviates from the median of the model output distribution (zero 

in this test case.) At a 5% significance level and if the observed mean value coincides with the 

median of the model output, 95% of the realizations are deemed acceptable using the Z test, 

whereas only 60% of the model realizations are deemed acceptable using the P1 measure. 



 23

Therefore a rejection region of less than 30% for the P1 criteria is very stringent and should not 

be confused with the 95% confidence interval used for presenting the output uncertainty. 

 

4.6 Testing the Efficacy of P2 for Multiple Validation Targets  

A numerical experiment is constructed to test the efficacy of the P2 metric as follows: 

1. A model is assumed to produce output according to a standard normal distribution. 

2. Observations are assumed to follow a normal distribution with mean μ and unit variance. 

The numerical experiment chooses mean values μ from an observation distribution range 

– 4.0 to 4.0 (i.e., – 4.0, –3.9, …, 4.0).  

3. For each mean value, a random sample of 30 observations is drawn from a normal 

distribution with the mean equal to the current mean value (i.e., – 4.0, – 3.9, …, 4.0) and 

a standard deviation equal to 1.0. 

4. Each of the 30 observations is then compared to the model’s distribution N (0, 1) to 

determine what percentage falls outside of the 95% confidence interval (i.e., –1.96 to 

1.96).  

5. The process is repeated for all observation means [– 4.0, 4.0]. 

Due to the random nature of the distributions generated in the above procedure, we repeated the 

above experiment about 100 times and the results are shown in Figure 12. The figure shows that 

if 50% is chosen as the rejection threshold for the P2 metric, then the model would be accepted 

for μ = [−1.96, 1.96]. This is a very interesting result as one might initially think 95% should be 
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the acceptance threshold, but 50% yields the same acceptance region as a standard t test at a 95% 

confidence level. This warrants further analysis, and as stated earlier, the different aspects of the 

validation process need more attention for ultimate goal of arriving at a rigorous set of steps for 

conducting a model validation process.  

 

5. Uncertainty Reduction Using Validation Data and Application to the Amchitka Model 

The use of validation data to evaluate input parameter distributions and reduce their uncertainty 

level is demonstrated for the Amchitka site as a case study. Amchitka is the southernmost island 

of the Rat Island Group of the Aleutian Island chain extending southwestward from mainland 

Alaska. The focus here is on one of three underground nuclear tests conducted on the island, a 

test known as Milrow.  

5.1 Model Background 

The groundwater flow and radionuclide transport at the Milrow test was modeled using two-

dimensional numerical simulations as described in Hassan et al. (2002). The Milrow model 

involved solving a density-driven flow problem (seawater intrusion problem) to obtain the 

salinity distribution and the groundwater velocities followed by solving the transport problem to 

predict radionuclide mass fluxes leaving the groundwater system and discharging into the sea. A 

multi-parameter uncertainty analysis was adapted and used to address the effects of the 

uncertainties associated with the definition of the modeled processes and the values of the 

parameters governing these processes. Details of the modeling efforts at Amchitka can be found 

in Hassan et al. (2001, 2002) and Pohlmann et al. (2002).  
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With uncertain parameters, the output of the seawater intrusion problem (i.e., the location of the 

transition zone between freshwater and saltwater in the groundwater system) varies between 

model realizations with significant impacts on the solution of the transport equation. This 

location is mainly determined by the recharge-conductivity ratio. This ratio varies dramatically 

in the model due to the large parametric uncertainty built into the conductivity and recharge 

distributions. Figure 13 shows the model domain, boundary conditions of the density-driven flow 

problem, the radionuclide source, transport processes considered and an example transition zone 

location and velocity vectors as produced by one realization.  

Although the analysis conducted in Hassan et al. (2002) conservatively accounted for parametric 

uncertainty, the need remained validation of the numerical groundwater model with an 

independent data set. The Consortium for Risk Evaluation with Stakeholder Participation II 

(CRESP II), which represents an Organization of the Institute for Responsible Management, 

initiated a field expedition in the summer of 2004 for the purpose of collecting data as part of the 

Amchitka Independent Assessment Science Plan.1 One of the objectives of this data collection 

campaign was to provide data to reduce uncertainty about the risk of radionuclide release 

through the groundwater system to the marine environment.  

Of great importance to the groundwater model are the magnetotelluric (MT) measurements for 

determining the subsurface salinity and porosity structure of the Island, which were recently 

released in a report by Unsworth et al. (2005). Magnetotelluric data were collected on profiles 

that passed through the contaminant source at Milrow. The data presented in Unsworth et al. 

(2005) showed the presence of a pattern of increasing, decreasing and increasing resistivity with 

increasing depth at the site. The depth at which there is an inflection point of the resistivity 
                                                 
1 http://www.cresp.org/ 
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profile where resistivity begins to decrease is interpreted by Unsworth et al. (2005) as 

corresponding to the top of the transition zone (TZ) as the salinity increases. The deeper 

inflection point (increase in resistivity after its decrease with depth) is interpreted as 

corresponding to the base of the transition zone, as salinity remains constant and the decreasing 

porosity causes a rise in resistivity (Unsworth et al., 2005). 

This independent set of data provides an opportunity for applying the validation process to the 

groundwater flow model at the Milrow site and reducing the uncertainty in the model parameters 

and subsequently the model output. To accomplish this, data pertaining to the location of the 

freshwater lens (from the interpretation of the MT data) could be compared to the groundwater 

model input distributions as part of the validation process, and then the distributions tightened 

around the new data for uncertainty reduction.  

5.2 Bayesian Framework for Uncertainty Reduction 

In hydrologic modeling, the uncertainty of parameter estimation needs to be accounted for and 

the impact on the model output uncertainty needs to be quantified. Bayesian inference provides a 

framework within which these issues can be addressed with the end product of models being a 

probability distribution known as the posterior distribution of the model parameters (input) and 

predictions (output) quantifying uncertainty after data have been collected and incorporated. 

Although a number of recent studies used this framework for rainfall-runoff modeling and 

parameter estimation (e.g., Kuczera, 1983; Freer et al., 1996; Kuczera and Parent, 1998; Kuczera 

and Mroczkowski, 1998; Bates and Campbell, 2001; Marshall et al., 2004), its application to 

other areas has been limited due to computational difficulties. The advent of Markov Chain 
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Monte Carlo (MCMC) methods has helped address some of these computational difficulties 

(Marshall et al., 2004). 

For certain simple analyses, the posterior distributions (on which inferences are usually made) 

can be derived analytically, which means they can be written down in standard statistical 

notation. When this is not possible, a Bayesian solution can still be obtained through the use of 

simulation methods, such as the MCMC methods. Some details about the Bayesian framework 

and the MCMC method are presented next in relation to the Milrow model. 

For the stochastic groundwater flow model at Milrow, it is assumed that the newly collected data 

are expressed by the data vector D. One of the elements in this data vector would be the 

groundwater salinity profile beneath the island, C, which also represents the steady-state output 

of the model. One can express the model as 

)();,()( xΘxGx ε+= MC          (8) 

where C(x) is the observed data at location x, M(G; Θ) is the model output for location x, G is 

the set of model input describing domain geometry, boundary conditions, and discretizations, Θ 

is the vector of unknown model parameters to be estimated from the data (e.g., hydraulic 

conductivity, recharge, porosity), and ε (x) is an error term which is assumed to be a normally 

distributed random variable having zero mean and variance 2
εσ . At this point it is also assumed 

that the error terms are all mutually independent. 

The set of model input G includes those aspects that do not change from one realization to 

another. The set of model parameters Θ includes all the uncertain parameters needed to run the 

model and that change from one model realization to another. The vector Θ is treated as a 
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random variable distributed according to a probability density function. This density function 

expresses our uncertainty about Θ. Before considering the newly collected data, the knowledge 

about the model parameter set can be summarized in a distribution P(Θ) called the prior 

distribution.  

The posterior distribution of the parameter set, P(Θ |C) can be obtained through the application 

of Bayes’ theorem 

)(
)|()()|(

CP
CPPCP ΘΘΘ =         (9) 

where P(C| Θ) is the likelihood function that summarizes the model relation to the collected data 

given the parameters used in the model and P(C) is a proportionality constant required so that 

P(Θ|C) is a proper density function. It is important to note that the posterior distribution assumes 

a shape similar to the prior when available data are limited. But when there are large data sets, 

the posterior distribution will be influenced more by the data than by the assumed prior 

distribution. Also, the information in the new sample data will dominate the posterior if the prior 

distribution is selected to represent vague prior knowledge. P (Θ|C) thus contains all of the 

available information about Θ coming from both prior knowledge and collected data. Bayesian 

inference, therefore, reduces to summarizing the posterior density P (Θ|C). 

MCMC sampling explores the posterior distribution by generating a random process (a Markov 

process) that eventually converges to the stationary, posterior distribution of the parameters. 

While there exist many different MCMC sampling algorithms, the Metropolis-Hastings 

algorithm is the most commonly used. Details of this algorithms are beyond the scope of this 
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chapter, but can be found in Bates and Campbell (2001), Campbell et al. (1999), Marshall et al. 

(2004), Kuczera and Parent (1998), to name a few sources. 

5.3 Application to the Milrow Site in Amchitka 

The validation data at Milrow are obtained from the MT data and the interpretation of the 

measured MT signals. Specifically, this provided identification of the top and bottom bounds of 

the transition zone from freshwater to seawater beneath the island. This set of data is used with 

MCMC to develop the posterior distributions for conductivity, recharge, and conductivity-

recharge ratio. The development of the posterior distribution serves to evaluate the original 

(prior) distribution selection and to reduce the uncertainty in the parameter distributions, both of 

which are objectives of the validation process.  

In the original Milrow model (Hassan et al., 2002), lognormal distributions were assumed for 

both recharge and conductivity and they were assumed to be uncorrelated. These prior 

distributions were based on calibrating the model to a set of salinity data that was available from 

one borehole at the site. This data set clearly defines the increase in salinity with depth to near-

seawater concentrations. Therefore, the location of the transition zone separating the shallow 

freshwater from the deep saltwater provided by this data set guided the selection of the 

distributions used in the original model. These distributions are used here as the prior distribution 

for the MCMC analysis and with the help of the MT data, posterior distributions are developed. 

Figure 14 shows the potential of the MCMC approach to help in the validation process and 

uncertainty reduction by conditioning on field data. The figure compares the prior distributions 

for the recharge, conductivity and the recharge-conductivity ratio to the posterior distributions 

for these parameters obtained utilizing the prior knowledge and the new MT-related data. It is 



 30

clear that the posterior distributions are very different from the prior ones, especially for the 

recharge-conductivity ratio. The interpretation of the MT data indicated a deeper transition zone 

than what was used in the model. This translated into the posterior distribution of conductivity 

being skewed to lower values relative to the prior and that of recharge being skewed to the 

higher values. The end result is a higher recharge-conductivity ratio for which the posterior 

distribution has a sharp peak and a much smaller range compared to the prior, indicating a 

dramatic reduction in uncertainty of this ratio.  

Although the posterior distributions of model input parameters are different from the prior, no 

parameter value in the posterior range is outside the ranges implemented in the orginal model. 

The MCMC tool has the potential to be a very useful tool in the validation process and in 

particular for uncertainty reduction of model input parameters and consequently model output.  

6. Summary and Conclusions 

Models have an inherent uncertainty. The difficulty in fully characterizing the subsurface 

environment makes uncertainty an integral component of groundwater flow and transport 

models, which dictates the need for continuous monitoring and improvement. Building and 

sustaining confidence in closure decisions and monitoring networks based on models of 

subsurface conditions require developing confidence in the models through an iterative process.  

The definition of model validation is postulated as a confidence building and long-term iterative 

process (Hassan, 2004a). Model validation should be viewed as a process not an end result.  

Following Hassan (2004b), an approach is proposed for the validation process of stochastic 

groundwater models. The approach is briefly summarized herein and detailed analyses of 
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acceptance criteria for stochastic realizations and of using validation data to reduce input 

parameter uncertainty are presented and applied to two case studies.  

During the validation process for stochastic models, a question arises as to the sufficiency of the 

number of acceptable model realizations (in terms of conformity with validation data). Using a 

hierarchical approach to make this determination is proposed. This approach is based on 

computing five measures or metrics and following a decision tree to determine if a sufficient 

number of realizations attain satisfactory scores regarding how they represent the field data used 

for calibration (old) and used for validation (new).  

The first two of these measures are applied to hypothetical scenarios using the first case study 

and assuming field data consistent with the model or significantly different from the model 

results. In both cases it is shown how the two measures would lead to the appropriate decision 

about the model performance. Standard statistical tests are used to evaluate these measures with 

the results indicating they are appropriate measures for evaluating model realizations. 

The use of validation data to constrain model input parameters is shown for the second case 

study using a Bayesian approach known as Markov Chain Monte Carlo. The approach shows a 

great potential to be helpful in the validation process and in incorporating prior knowledge with 

new field data to derive posterior distributions for both model input and output.  
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For Further Information 

This chapter attempts to introduce a newly proposed validation methodology for numerical 

groundwater models cast in a stochastic framework. Research on model validation is extensively 

reported in the literature, but mostly focuses on process models and definitions of the term. In the 

area of toxic waste management, a number of authors (e.g., Moran and Mezgar, 1982; Huyakorn 

et al., 1984; van der Heijde et al., 1985; van der Heijde, 1987; Beljin, 1988) have considered the 

question of whether a model used in a safety assessment program is valid in making appropriate 

long-term predictions. During the late 1980s, an effort was made to establish a groundwater 

research data center for the validation of subsurface flow and transport models (Miller and van 

der Heijde, 1988; van der Heijde et al., 1989).  

In the area of nuclear waste management, the need to validate groundwater models has received 

increased emphasis. This has led to institutionalized and publicized programs for validation of 

hydrogeological models. A number of international cooperative projects such as INTRACOIN 

(1984, 1986), HYDROCOIN (Grundfelt, 1987; Grundfelt et al., 1990), INTRAVAL (Andersson 

et al., 1989; Nicholson, 1990), STRIPA (Herbert et al., 1990), CHEMVAL (Broyd et al., 1990), 

BIOMOVS (SSI, 1990) were devoted to the validation of models. Model validation was also 

extensively discussed in symposia including GEOVAL87 (1987), GEOVAL90 (1990) and 

GEOVAL94 (1994). The journal Advances in Water Resources dedicated two special issues to 

the topic of model validation (AWR, 1992a, b). Additionally, a wealth of literature has been 

published on validation in the field of systems engineering and operations research (Tsang, 

1991), some of which may be useful for subsurface model validation. Examples cited by Tsang 

(1991) include Balci (1988, 1989), Balci and Sargent (1981, 1982, 1984), Gass (1983), Gass and 

Thompson (1980), Oren (1981), Sargent (1984, 1988), Schruben (1980), and Zeigler (1976).  
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The Swedish Nuclear Power Inspectorate, SKI, initiated and completed three international 

cooperation projects to increase the understanding and credibility of models describing 

groundwater flow and radionuclide transport. The INTRACOIN project is the first of these, and 

it focused on verification and validation of transport models. The HYDROCOIN study was the 

second study and represented an international cooperative project for testing groundwater-

modeling strategies for performance assessment of nuclear waste disposal. The SKI initiated the 

study in 1984, and the technical work was finalized in 1987 (Swedish Nuclear Power 

Inspectorate, 1987). The participating organizations were regulatory authorities as well as 

implementing organizations in 10 countries. The study was devoted to testing of groundwater 

flow models and was performed at three levels: computer code verification, model validation, 

and sensitivity/uncertainty analysis.  

Based upon lessons learned from INTRACOIN and HYDROCOIN, international consensus 

grew prior to and during the GEOVAL Symposium in Stockholm in April 1987 to begin a new 

project dealing with validation of geosphere transport models. This new international cooperative 

project, named INTRAVAL, began in October 1987. As with the preceding projects, 

INTRAVAL was organized and managed by the SKI.  

The INTRAVAL project was established to evaluate the validity of mathematical models for 

predicting the potential transport of radioactive substances in the geosphere (Swedish Nuclear 

Power Inspectorate, 1990). The unique aspect of INTRAVAL was the interaction between the 

experimentalists and modelers simulating the selected test cases for examining model validation 

issues. The test cases selected consisted of laboratory and field transport experiments and natural 

analogue studies that incorporate hydrogeologic and geochemical processes relevant to safety 

assessments of radioactive waste repositories. 
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Glossary 

Model: An abstraction or a simple representation of a real system or process 

Conceptual Model: A hypothesis for how a system or a process operates  

Mathematical Model: A quantitative expression of the system processes, forces, and events 

Computer Code: An algorithm to implement the mathematical model and perform the model 

computations 

Generic Models: The computer codes that are used to solve the mathematical flow and transport 

equations  

Site-specific Models: The computer codes combined with the conceptual models (model 

structure), input data and boundary conditions for a particular geographical 

area 

Research or Analysis Models: Models used for studying and understanding different 

phenomena in the subsurface and they usually rely on hypothetical domains or 

very well characterized field sites  

Predictive or Decision-making Models: Models that are mainly used to support and aid a 

regulatory decision regarding a subsurface issue 

Model Calibration: The process of tuning the model to identify the independent input 

parameters by fitting the model results to some field data or experimental 

data, which usually represent the dependent system parameters 

History Matching: Using historical field data during the model building and calibration process 

and trying to match them before using the model to predict future system 

response 
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Computer Code Verification: Verification of a mathematical model or its computer code; it is 

obtained when it is shown that the model behaves as intended and that the 

equations are correctly encoded and solved 

Model Verification: A process aimed at establishing a greater confidence in the model by using 

a set of calibrated parameter values and stresses to reproduce a second set of 

field data that is available during the model building process 

Model Validation: A process, not an end result, aimed at building confidence in the model 

predictions through a structured set of tests and evaluations with trigger 

mechanisms that force the process back to the model building stage if model 

is not consistent with field data collected for validation 

Research Model Validation: Validation of a research model that helps one understand 

processes, uncertainties, etc. 

Predictive Validation: Performing a validation process for a site-specific, predictive model for 

the goal of helping the decision-making process 

Validation Target: The model output for which filed data will be collected for validation 

purposes 

Bayesian Inference: An alternative to the classical approach to statistical analysis that benefits 

from prior knowledge as well as newly collected data to quantify parameter 

uncertainty 
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Markov Chain Monte Carlo: A form of Bayesian inference that can be used to simulate the 

posterior distribution of model parameters 

Prior Distribution: The parameter distribution that summarizes all the knowledge about the 

parameter before collecting new data 

Posterior Distribution: The parameter distribution that is obtained through Bayesian inference 

and it relies on both prior knowledge and newly collected data 

Likelihood Function: A probability function describing the probability of seeing the observed 

data (newly collected data) given that a certain model/assumption is true 

Density-driven Flow: A groundwater flow problem in which the flow depends on (or is driven 

by) the variations in groundwater density (e.g., due to thermal effects or 

salinity effects)  

Transition Zone: The varying salinity zone separating shallow freshwater (mainly from 

recharge) from deep saltwater (from the ocean or the sea) 
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