201 MHz Cavity R&D for MUCOOL and MICE

PDF Version Also Available for Download.

Description

We describe the design, fabrication, analysis and preliminary testing of the prototype 201 MHz copper cavity for a muon ionization cooling channel. Cavity applications include the Muon Ionization Cooling Experiment (MICE) as well as cooling channels for a neutrino factory or a muon collider. This cavity was developed by the US muon cooling (MUCOOL) collaboration and is being tested in the MUCOOL Test Area (MTA) at Fermilab. To achieve a high accelerating gradient, the cavity beam irises are terminated by a pair of curved, thin beryllium windows. Several fabrication methods developed for the cavity and windows are novel and offer ... continued below

Creation Information

Li, Derun; Virostek, Steve; Zisman, Michael; Norem, Jim; Bross,Alan; Moretti, Alfred et al. June 23, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We describe the design, fabrication, analysis and preliminary testing of the prototype 201 MHz copper cavity for a muon ionization cooling channel. Cavity applications include the Muon Ionization Cooling Experiment (MICE) as well as cooling channels for a neutrino factory or a muon collider. This cavity was developed by the US muon cooling (MUCOOL) collaboration and is being tested in the MUCOOL Test Area (MTA) at Fermilab. To achieve a high accelerating gradient, the cavity beam irises are terminated by a pair of curved, thin beryllium windows. Several fabrication methods developed for the cavity and windows are novel and offer significant cost savings as compared to conventional construction methods. The cavity's thermal and structural performances are simulated with an FEA model. Preliminary high power RF commissioning results will be presented.

Source

  • 10th European Particle Accelerator Conference(2006), Edinburgh, Scotland, June 26-30, 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--61226
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 889262
  • Archival Resource Key: ark:/67531/metadc873855

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 23, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Sept. 29, 2016, 1:33 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Li, Derun; Virostek, Steve; Zisman, Michael; Norem, Jim; Bross,Alan; Moretti, Alfred et al. 201 MHz Cavity R&D for MUCOOL and MICE, article, June 23, 2006; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc873855/: accessed June 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.