High Precision SC Cavity Diagnostics with HOM Measurements

PDF Version Also Available for Download.

Description

Experiments at the FLASH linac at DESY have demonstrated that the Higher Order Modes induced in Superconducting Cavities can be used to provide a variety of beam and cavity diagnostics. The centers of the cavities can be determined from the beam orbit which produces minimum power in the dipole HOM modes. The phase and amplitude of the dipole modes can be used as a high resolution beam position monitor, and the phase of the monopole modes to measure the beam phase relative to the accelerator RF. Beam orbit feedback which minimizes the dipole HOM power in a set of structures ... continued below

Physical Description

5 pages

Creation Information

Frisch, Josef; Hendrickson, Linda; McCormick, Douglas; May, Justin; Molloy, Stephen; Ross, Marc et al. August 18, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Experiments at the FLASH linac at DESY have demonstrated that the Higher Order Modes induced in Superconducting Cavities can be used to provide a variety of beam and cavity diagnostics. The centers of the cavities can be determined from the beam orbit which produces minimum power in the dipole HOM modes. The phase and amplitude of the dipole modes can be used as a high resolution beam position monitor, and the phase of the monopole modes to measure the beam phase relative to the accelerator RF. Beam orbit feedback which minimizes the dipole HOM power in a set of structures has been demonstrated. For most SC accelerators, the existing HOM couplers provide the necessary signals, and the down mix and digitizing electronics are straightforward, similar to those for a conventional BPM.

Physical Description

5 pages

Source

  • Presented at European Particle Accelerator Conference (EPAC 06), Edinburgh, Scotland, 26-30 Jun 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-12066
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 889665
  • Archival Resource Key: ark:/67531/metadc873806

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 18, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 29, 2016, 12:36 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Frisch, Josef; Hendrickson, Linda; McCormick, Douglas; May, Justin; Molloy, Stephen; Ross, Marc et al. High Precision SC Cavity Diagnostics with HOM Measurements, article, August 18, 2006; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc873806/: accessed September 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.