Size-selection initiation model extended to include shape and random factors

PDF Version Also Available for Download.

Description

The Feit-Rubenchik size-selection damage model has been extended in a number of ways. More realistic thermal deposition profiles have been added. Non-spherical shapes (rods and plates) have been considered, with allowance for their orientation dependence. Random variations have been taken into account. An explicit form for the change of absorptivity with precursor size has been added. A simulation tool called GIDGET has been built to allow adjustment of the many possible parameters in order to fit experimental data of initiation density as a function of fluence and pulse duration. The result is a set of constraints on the possible properties ... continued below

Physical Description

PDF-file: 15 pages; size: 0 Kbytes

Creation Information

Trenholme, J B; Feit, M D & Rubenchik, A M November 2, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Feit-Rubenchik size-selection damage model has been extended in a number of ways. More realistic thermal deposition profiles have been added. Non-spherical shapes (rods and plates) have been considered, with allowance for their orientation dependence. Random variations have been taken into account. An explicit form for the change of absorptivity with precursor size has been added. A simulation tool called GIDGET has been built to allow adjustment of the many possible parameters in order to fit experimental data of initiation density as a function of fluence and pulse duration. The result is a set of constraints on the possible properties of initiation precursors.

Physical Description

PDF-file: 15 pages; size: 0 Kbytes

Source

  • Presented at: Boulder Damage Symposium XXXVII, Boulder, CO, United States, Sep 19 - Sep 21, 2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-PROC-216931
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 886665
  • Archival Resource Key: ark:/67531/metadc873736

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 2, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 7, 2016, 9:22 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Trenholme, J B; Feit, M D & Rubenchik, A M. Size-selection initiation model extended to include shape and random factors, article, November 2, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc873736/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.