Phosphate Barriers for Immobilization of Uranium Plumes

PDF Version Also Available for Download.

Description

Uranium contamination of the subsurface has remained a persistent problem plaguing remedial design at sites across the U.S. that were involved with production, handling, storage, milling, and reprocessing of fissile uranium for both civilian and defense related purposes. Remediation efforts to date have relied upon excavation, pump-and-treat, or passive remediation barriers (PRB?s) to remove or attenuate uranium mobility. Documented cases convincingly demonstrate that excavation and pump-and-treat methods are ineffective for a number of highly contaminated sites. There is growing concern that use of conventional PRB?s, such as zero-valent iron, are a temporary solution to a problem that will persist for ... continued below

Creation Information

Burns, Peter C. June 1, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Uranium contamination of the subsurface has remained a persistent problem plaguing remedial design at sites across the U.S. that were involved with production, handling, storage, milling, and reprocessing of fissile uranium for both civilian and defense related purposes. Remediation efforts to date have relied upon excavation, pump-and-treat, or passive remediation barriers (PRB?s) to remove or attenuate uranium mobility. Documented cases convincingly demonstrate that excavation and pump-and-treat methods are ineffective for a number of highly contaminated sites. There is growing concern that use of conventional PRB?s, such as zero-valent iron, are a temporary solution to a problem that will persist for thousands of years. Alternatives to the standard treatment methods are therefore warranted. The core objective of our research is to demonstrate that a phosphorous amendment strategy will result in a reduction of dissolved uranium to below the proposed drinking water standard. Our hypothesis is that long-chain polyphosphate compounds forestall precipitation of sparingly soluble uranyl phosphate compounds, which is key to preventing fouling of wells at the point of injection. Our other fundamental objective is to synthesize and correctly characterize the uranyl phosphate phases that form in the geochemical conditions under consideration. This report summarizes work conducted at the University of Notre Dame through November of 2003 under DOE grant DE-FG07-02ER63489, which has been funded since September, 2002. The objectives at Notre Dame are development of synthesis techniques for uranyl phosphate phases, together with detailed structural and chemical characterization of the myriad of uranyl phosphate phases that may form under geochemical conditions under consideration.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-63730--2005
  • Grant Number: FG02-04ER63730
  • DOI: 10.2172/885054 | External Link
  • Office of Scientific & Technical Information Report Number: 885054
  • Archival Resource Key: ark:/67531/metadc873693

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 4, 2016, 2:42 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Burns, Peter C. Phosphate Barriers for Immobilization of Uranium Plumes, report, June 1, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc873693/: accessed August 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.