This report covers the third year of this research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis (FTS) on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict molar flow rates and concentrations of all reactants and major product species (H{sub 2}O, CO{sub 2}, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. ...
continued below
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this report.
Follow the links below to find similar items on the Digital Library.
Description
This report covers the third year of this research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis (FTS) on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict molar flow rates and concentrations of all reactants and major product species (H{sub 2}O, CO{sub 2}, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the reporting period we utilized experimental data from the STSR, that were obtained during the first two years of the project, to perform vapor-liquid equilibrium (VLE) calculations and estimate kinetic parameters. We used a modified Peng-Robinson (PR) equation of state (EOS) with estimated values of binary interaction coefficients for the VLE calculations. Calculated vapor phase compositions were in excellent agreement with experimental values from the STSR under reaction conditions. Occasional discrepancies (for some of the experimental data) between calculated and experimental values of the liquid phase composition were ascribed to experimental errors. The VLE calculations show that the vapor and the liquid are in thermodynamic equilibrium under reaction conditions. Also, we have successfully applied the Levenberg-Marquardt method (Marquardt, 1963) to estimate parameters of a kinetic model proposed earlier by Lox and Froment (1993b) for FTS on an iron catalyst. This kinetic model is well suited for initial studies where the main goal is to learn techniques for parameter estimation and statistical analysis of estimated values of model parameters. It predicts that the chain growth parameter ({alpha}) and olefin to paraffin ratio are independent of carbon number, whereas our experimental data show that they vary with the carbon number. Predicted molar flow rates of inorganic species, n-paraffins and total olefins were generally not in good agreement with the corresponding experimental values. In the future we'll use kinetic models based on non-constant value of {alpha}.
This report is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Bukur, Dragomir B.; Froment, Gilbert F. & Olewski, Tomasz.KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYSTHESIS,
report,
September 29, 2005;
United States.
(digital.library.unt.edu/ark:/67531/metadc873685/:
accessed April 21, 2018),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.