Studies of Orbitally Excited $D^{**}_{(s)}$ and B^{**} Mesons at CDF and DØ

Jennifer Pursley (on behalf of the CDF and DØ Collaborations)

The Johns Hopkins University, 3400 N. Charles St. Baltimore, MD 21218, USA

Abstract. Using a large data sample of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV recorded by the CDF and DØ detectors operating at the Fermilab Tevatron, the orbitally excited B mesons B_1 and B_2^* are observed directly as two separate states in fully reconstructed decays to $B^{(*)}\pi$. The masses and the mass differences between the states are presented. In the charm system, the orbitally excited D mesons D_1 and D_2^* are observed in fully reconstructed decays to $D^{(*)}\pi$. Measurements of the product branching rates of semileptonic decays $B\bar{D}\mu\nu\bar{\nu}$ and their ratio are presented. We also present the observation of the semileptonic decays $B_s\mu\nu D_s$ where the excited D_s^{**} states are reconstructed in the mode $D_s^{**} \to D^* K^{0}_S$.

Keywords: Orbitally excited mesons, D^{**}, $D^{**}_{(s)}$, B^{**}, Heavy Quark Effective Theory

THEORETICAL MOTIVATION

The D and B mesons are examples of a heavy-light quark bound state. The spectroscopy of these mesons may be predicted through application of Heavy Quark Effective Theory and the ideas behind it, particularly in the limit $m_{(c,b)} \to \infty$. In this limit, the excited states are described by the light degrees of freedom with spin-parity J^P. This leaves a degenerate doublet for each meson state, with the degeneracy broken by effects of the order $\Lambda_{QCD}/m_{(c,b)}$. These first excited states are known as the B^{**} and $D^{**}_{(s)}$ in the B and charm systems respectively. Measuring the properties of these mesons tests HQET.

The CDF and DØ detectors are described in detail in Ref [1] and Ref [2] respectively.

D^{**} mass measurement

CDF measures the masses and widths of the D_1^0 and D_2^0 states using two fully hadronic decay channels in 210 pb^{-1} of data [3]:

- $D^{**} \to D^{*+}\pi^-, D^{*+} \to D^0\pi^+$
- $D^{**} \to D^{+}\pi^-$, with feed-down from $D^{*+} \to D^+\pi^0$ channel

The D^{**} invariant mass difference for both channels is shown in Figure 1. The wide D^{**} states are taken from the PDG [4]. The results are

1 Charge conjugated states are always implied.

Studies of Orbitally Excited $D^{**}_{(s)}$ and B^{**} Mesons at CDF and DØ December 12, 2005 1
DØ measures the branching fractions of the decays $B \to \bar{D}^0(2420)\mu^+\nu\mu X$ and $B \to \bar{D}^0(2460)\mu^+\nu\mu X$, and makes the first direct measurement of their ratio in 460 pb$^{-1}$ of data [5]. The D^{**} invariant mass shown in Figure 2a is fit with the sum of two relativistic Breit-Wigners for the narrow states.

The branching fraction for the decays $B \to \bar{D}^{**}\mu^+\nu\mu X$ are determined by normalization to the known value of the branching fraction for $B(B \to D^{*-}\ell^+\nu\mu X) = (2.75 \pm 0.19)\%$ [4]. To compare with theory, the fragmentation $B(\bar{t} \to B)$ is included where B is either B^0 or B^\pm. The results for the D^{**} narrow branching fractions are

$$B(\bar{t} \to B) \cdot B(B \to \bar{D}_1^0, \bar{D}_2^0) \mu^+\nu\mu X \cdot B((\bar{D}_1^0, \bar{D}_2^0) \to D^{*-}\pi^+) = (0.122 \pm 0.007 (stat) \pm 0.015 (syst))\%$$

$$B(\bar{t} \to B) \cdot B(B \to \bar{D}_1^0) \mu^+\nu\mu X \cdot B(\bar{D}_1^0 \to D^{*-}\pi^+) = (0.087 \pm 0.007 (stat) \pm 0.014 (syst))\%$$

$$B(\bar{t} \to B) \cdot B(B \to \bar{D}_2^0) \mu^+\nu\mu X \cdot B(\bar{D}_2^0 \to D^{*-}\pi^+) = (0.035 \pm 0.007 (stat) \pm 0.008 (syst))\%$$

$$\frac{B(\bar{t} \to B) \cdot B(B \to \bar{D}_1^0) \mu^+\nu\mu X \cdot B(\bar{D}_1^0 \to D^{*-}\pi^+)}{B(\bar{t} \to B) \cdot B(B \to \bar{D}_2^0) \mu^+\nu\mu X \cdot B(\bar{D}_2^0 \to D^{*-}\pi^+)} = 0.39 \pm 0.09 (stat) \pm 0.12 (syst)$$

Observation of D_{s}^{**}

DØ observes $B_s \to \mu\nu D_{s}^{**}$ through the decay channel $D_{s}^{**} \to D^{**}K_{s}^0$ with $D^{**} \to D^0\pi^+, D^0 \to K^+\pi^-$ and $K_{s}^0 \to \pi^+\pi^-$ in 485 pb$^{-1}$ of data. The significance of the signal...
FIGURE 2. Right: The invariant mass $M(D\pi)$ of $D\pi^*$ combinations with opposite charges and the hatched histogram corresponds to same charge combinations. Left: The invariant mass of $D\pi K$, which shows evidence of the D state.

Both CDF and DØ measured the narrow B states. DØ uses the fully reconstructed decays of $B\psi K$, $B_0\psi K$, and $B_0\psi K_S$ to reconstruct a mixture of B_0 and B_0 states in 350 pb$^{-1}$ of data [7]. The two narrow B states are fit by a relativistic Breit-Wigner convoluted with a Gaussian detector resolution function. With the widths of the two narrow states set equal, the results shown in Figure 3 are

- $M = 5724^{+4}_{-7}$ stat # 7^{+5}_{-6} syst MeV/c2
- $M = 23^{+12}_{-7}$ stat # 9^{+9}_{-7} syst MeV/c2
- $\Gamma_1 = 9^{+9}_{-7}$ stat # 9^{+9}_{-7} syst MeV/c2
- $\Gamma_2 = 12^{+12}_{-7}$ stat # 12^{+12}_{-7} syst MeV/c2
CDF uses the fully reconstructed decays of $B^+ \to J/\psi K^+$ and $B^+ \to \bar{D}^0 \pi^+$ to reconstruct the B^{*+0} states in 370 pb^{-1} of data [8]. Due to very different signal to background structure, B^{*0} events could not be added together and were fit simultaneously in both channels. Narrow B^{*+0} states are fit with a non-relativistic Breit-Wigner convoluted with a double Gaussian detector resolution. The results shown in Figure 4 are

- $M(B^0) = 5734 \pm 3(stat) \pm 2(syst)$ MeV/c2
- $M(B^{*0}) = 5738 \pm 5(stat) \pm 1(syst)$ MeV/c2

CONCLUSIONS

All measurements agree well with HQET models. Many measurements are statistically limited, and will improve as more data is analyzed. The results are all interesting and competitive; the semileptonic branching fractions, for example, are an order of magnitude better than previous measurements.

REFERENCES

6. DØ Collaboration, “Evidence of $B_s \to D_{s1}^{*+} \mu \nu X$ at DØ,” DØ Note 4727 (Mar. 4, 2005). http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/B/B19/B19.pdf