Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

PDF Version Also Available for Download.

Description

This quarterly report re-evaluates current market objectives in the exploration and production industry, discusses continuing progress in testing that evaluates emission control technologies applied to a two-stroke cycle natural gas-fueled engine, and presents a scheme for enacting remote monitoring and control of engines during upcoming field tests. The examination of current market objectives takes into account technological developments and changing expectations for environmental permitting which may have occurred over the last year. This demonstrates that the continuing work in controlled testing and toward field testing is on track Market pressures currently affecting the gas exploration and production industry are shown ... continued below

Creation Information

Beshouri, Greg; Chapman, Kirby S.; McCarthy, Jim; Nuss-Warren, Sarah R. & Whelan, Mike March 1, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This quarterly report re-evaluates current market objectives in the exploration and production industry, discusses continuing progress in testing that evaluates emission control technologies applied to a two-stroke cycle natural gas-fueled engine, and presents a scheme for enacting remote monitoring and control of engines during upcoming field tests. The examination of current market objectives takes into account technological developments and changing expectations for environmental permitting which may have occurred over the last year. This demonstrates that the continuing work in controlled testing and toward field testing is on track Market pressures currently affecting the gas exploration and production industry are shown to include a push for increased production, as well as an increasing cost for environmental compliance. This cost includes the direct cost of adding control technologies to field engines as well as the indirect cost of difficulty obtaining permits. Environmental regulations continue to require lower emissions targets, and some groups of engines which had not previously been regulated will be required to obtain permits in the future. While the focus remains on NOx and CO, some permits require reporting of additional emissions chemicals. Continuing work in controlled testing uses a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout the gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NOx emissions. Technologies including one pre-combustion chamber, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing have been evaluated in previous reports. Current work focuses on final preparations for testing pre-combustion chambers with different characteristics and using mid-to-high-pressure fuel valves. By using the Ajax DP-115 these tests are completed in a low-cost and efficient manner. The various technologies can be quickly exchanged with different hardware, and it is inexpensive to run the engine. Progress in moving toward field testing is discussed, and a sketch of the first planned field test is presented. While early field tests will be completed using 4-stroke cycle rich-burn engines, later tests will be conducted on 2- and 4-stroke cycle lean-burn engines. The advantages of beginning with the rich-burn engine are summarized.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: none
  • Grant Number: FC26-02NT15464
  • DOI: 10.2172/882460 | External Link
  • Office of Scientific & Technical Information Report Number: 882460
  • Archival Resource Key: ark:/67531/metadc873667

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 1, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 23, 2016, 11:55 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Beshouri, Greg; Chapman, Kirby S.; McCarthy, Jim; Nuss-Warren, Sarah R. & Whelan, Mike. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines, report, March 1, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc873667/: accessed September 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.