Measurement of the $B_0 \rightarrow \Psi(2S)\Lambda_0$ Branching Fraction on BaBar at the Stanford Linear Accelerator Center

by Alexander Raymond Olivas, Jr.

Ph.D. Thesis
Olivas, Jr., Alexander Raymond (Ph. D., Physics)

Measurement of the $B^0 \to \psi(2S)K^0$ Branching Fraction on BaBar at the Stanford Linear Accelerator Center.

Thesis directed by Professor Uriel Nauenberg

The decays of B^0 mesons to hadronic final states remains a rich area of physics on BaBar. Not only do the $\phi-K$ final states (e.g. $B^0 \to \psi(2S)K^0$) allow for the measurement of CP Violation, but the branching fractions provide a sensitive test of the theoretical methods used to account for low energy non-perturbative QCD effects.

We present the measurement of the branching fraction for the decay $B^0 \to \psi(2S)K_s$. The data set consists of $68.8 \pm 1.0 \times 10^6 B\bar{B}$ pairs collected on the $e^+e^- \to \Upsilon(4S)$ resonance on BaBar/PEP-II at the Stanford Linear Accelerator Center (SLAC). This analysis features a modification of present cuts, with respect to those published so far on BaBar, on the $K_s \to \pi^+\pi^-$ and $\psi(2S) \to J/\psi\pi^+\pi^-$ which aim at reducing the background while keeping the signal intact. Various data selection criteria are studied for the lepton modes (e^+e^- and $\mu^+\mu^-$) of the J/ψ and $\psi(2S)$ to improve signal purity as well as study the stability of the resultant branching fractions.
Contents

Chapter

1 Introduction 1

2 The Standard Model 2
 2.1 A Brief History of 20th Century Physics 2
 2.2 Fundamental Particles 4
 2.2.1 The fermions 4
 2.2.2 The Gauge Bosons 5
 2.3 The Cabibbo-Kobayashi-Maskawa Matrix 6

3 Physics of e^+e^- collisions at the Υ(4S) Resonance 9

4 Theoretical Estimate of the branching fraction 12

5 PEP-II and The BaBar Detector 15
 5.1 The PEP-II Collider 17
 5.2 The BaBar Magnet and Flux Return 19
 5.3 The Silicon Vertex Tracker 21
 5.3.1 Principles of Silicon Strip Sensors 21
 5.3.2 Layout of the BaBar Silicon Vertex Tracker 21
 5.3.3 Performance of the BaBar Silicon Vertex Tracker 23
 5.4 The Drift Chamber 23
 5.4.1 Principle of Operation 23
 5.4.2 The BaBar Drift Chamber 26
 5.4.3 Performance of the BaBar Drift Chamber 26
 5.5 Performance of combined BaBar tracking system (SVT and DCH) 29
5.6 The Detection of Internally Reflected Cherenkov light ... 29
 5.6.1 Principle of Operation ... 31
 5.6.2 The BaBar DIRC ... 32
 5.6.3 Performance of the DIRC .. 32
5.7 The Electromagnetic Calorimeter ... 32
 5.7.1 Principle of Operation ... 35
 5.7.2 The BaBar Electromagnetic Calorimeter .. 35
 5.7.3 Performance of the BaBar EMC .. 35
5.8 The Instrumented Flux Return ... 39
 5.8.1 Principle of Operation ... 39
 5.8.2 The BaBar Instrumented Flux Return .. 40
 5.8.3 Performance of the Instrumented Flux Return 40

6 Analysis Introduction ... 44
 6.1 Analysis Method ... 44
 6.2 Description of the data set ... 45

7 Background Event Topology ... 47
 7.1 Track Number ... 47
 7.2 Total Energy ... 49
 7.3 Fox-Wolfram Moments ... 49
 7.4 Event Thrust ... 53
 7.5 Initial Data Skin ... 54

8 $K_S \rightarrow \pi^+\pi^-$ - Selection and Reconstruction Study 57
 8.1 Monte Carlo Track Finding Study .. 58
 8.2 Decay length and momentum collinearity .. 58
 8.3 Combined K_S Cuts ... 60
 8.4 Comparison to Generic Monte Carlo .. 62

9 Tracking Efficiency and Selection of $J/\psi \rightarrow l^+l^-$ and $\psi(2S) \rightarrow l^+l^-$.. 66
 9.1 Monte Carlo Track Finding Efficiency .. 66
 9.2 Particle Identification ... 67
10 $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$: Tracking Efficiency and Selection Analysis 71
 10.1 Tracking Efficiency ... 71
 10.2 Mass difference between the $\psi(2S)$ and J/ψ candidates 71
 10.3 Removal of $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$ candidates which share pions daughters with $K_S \rightarrow \pi^+ \pi^-$... 74

11 Systematic Study of the Branching Fraction $B^0 \rightarrow \psi(2S)K^0$ 78
 11.1 The $\psi(2S) \rightarrow l^+ l^-$ Final States 78
 11.2 The $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$ Final States 78

12 B^0 Analysis and Branching Fraction Results 82
 12.1 Reconstruction Efficiency in Signal Monte Carlo 82
 12.2 The Standard BaBar $B^0 \rightarrow \psi(2S)K_S$ Selection 82
 12.2.1 Improving the Standard Selection 82
 12.3 Branching Fraction Results ... 84
 12.3.1 Systematic Errors .. 84
 12.3.2 Branching Fraction .. 87

13 Conclusion 89

Bibliography 90

Appendix

A Definition of the Jpsitoll Skim 92
 A.1 Background Multi-Hadron Filter 92
 A.2 B-Counting Multi-Hadron filter 92
 A.3 $J/\Phi \rightarrow l^+ l^-$ Filter .. 92

B B^0 Meson Kinematics 95
 B.1 Derivation of Energy substituted B^0 Mass 95

C Particle Identification (PID) Selectors 97
 C.1 Description of the variables used in electron identification 97
 C.2 Electron Likelihood Selector ... 98
C.3 Muon Cut Based Selector 98
 C.3.1 Description of the variables used for muon identification 98

D Description of Candidate Lists 100
 D.1 Definition of GoodTracksLoose 100
 D.2 Definition of ChargedTracks 100

E Theta distribution of ψ lepton daughters not reconstructed 101

F Particle ID Selection efficiencies for $J/\psi \rightarrow l^+l^-$ and $\psi(2S) \rightarrow l^+l^-$ 103
 F.1 Monte Carlo Corrections 103

G Selection of B^0 Candidates for $m_{\psi(2S)} - m_{J/\psi}$ Study 109

H The BaBar Standard B^0 Meson Selection 110

I B meson ΔE and m_{ES} plots for signal Monte Carlo, generic $B\bar{B}$ plus continuum Monte
 Carlo, and data. 112
 I.1 m_{ES} Plots 112
 I.1.1 Plots used in the calculation of the branching fraction 112
 I.1.2 Extreme cases considered in the estimation of the systematic error 114
 I.2 m_{ES} vs. ΔE Plots 115

J Plots of Fractional Deviations of branching fractions for Various Selection Criteria 116