Axions in String Theory

PDF Version Also Available for Download.

Description

In the context of string theory, axions appear to provide the most plausible solution of the strong CP problem. However, as has been known for a long time, in many string-based models, the axion coupling parameter Fa is several orders of magnitude higher than the standard cosmological bounds. We re-examine this problem in a variety of models, showing that Fa is close to the GUT scale or above in many models that have GUT-like phenomenology, as well as some that do not. On the other hand, in some models with Standard Model gauge fields supported on vanishing cycles, it is ... continued below

Physical Description

62 pages

Creation Information

Svrcek, Peter; /Stanford U., Phys. Dept. /SLAC; Witten, Edward & /Princeton, Inst. Advanced Study June 9, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In the context of string theory, axions appear to provide the most plausible solution of the strong CP problem. However, as has been known for a long time, in many string-based models, the axion coupling parameter Fa is several orders of magnitude higher than the standard cosmological bounds. We re-examine this problem in a variety of models, showing that Fa is close to the GUT scale or above in many models that have GUT-like phenomenology, as well as some that do not. On the other hand, in some models with Standard Model gauge fields supported on vanishing cycles, it is possible for Fa to be well below the GUT scale.

Physical Description

62 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SLAC-PUB-11894
  • Grant Number: AC02-76SF00515
  • DOI: 10.2172/883239 | External Link
  • Office of Scientific & Technical Information Report Number: 883239
  • Archival Resource Key: ark:/67531/metadc873637

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 9, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 22, 2016, 8:49 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Svrcek, Peter; /Stanford U., Phys. Dept. /SLAC; Witten, Edward & /Princeton, Inst. Advanced Study. Axions in String Theory, report, June 9, 2006; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc873637/: accessed October 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.