Mechanism of reservoir testing

PDF Version Also Available for Download.

Description

In evaluating geothermal resources we are primarily interested in data on the distribution of temperature and fluid conductivity within the reservoir, the total volume of the productive formations, recharge characteristics and chemical quality of the thermal fluids. While geophysical exploration by surface methods may furnish some data on the temperature field and give indications as to the reservoir volume, they furnish practically no information on the fluid conductivity and production characteristics. Such information will generally have to be obtained by tests performed within the reservoir, primarily by production tests on sufficiently deep wells. Reservoir testing is therefore one of the ... continued below

Physical Description

pages 146-152

Creation Information

Bodvarsson, Gunnar January 1, 1987.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In evaluating geothermal resources we are primarily interested in data on the distribution of temperature and fluid conductivity within the reservoir, the total volume of the productive formations, recharge characteristics and chemical quality of the thermal fluids. While geophysical exploration by surface methods may furnish some data on the temperature field and give indications as to the reservoir volume, they furnish practically no information on the fluid conductivity and production characteristics. Such information will generally have to be obtained by tests performed within the reservoir, primarily by production tests on sufficiently deep wells. Reservoir testing is therefore one of the most important tasks in a general exploration program. In principal, reservoir testing has much in common with conventional geophysical exploration. Although the physical fields applied are to some extent different, they face the same type of selection between controlled and natural drives, forward and inverse problem setting, etc. The basic philosophy (Bodvarsson, 1966) is quite similar. In the present paper, they discuss some fundamentals of the theory of reservoir testing where the fluid conductivity field is the primary target. The emphasis is on local and global aspects of the forward approach to the case of liquid saturated (dominated) Darcy type formations. Both controlled and natural driving pressure or strain fields are to be considered and particular emphasis is placed on the situation resulting from the effects of a free liquid surface at the top of the reservoir.

Physical Description

pages 146-152

Source

  • Proceedings fourth workshop geothermal reservoir engineering, Stanford, CA, December 13-15, 1978

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SGP-TR-30
  • Report No.: CONF-781222-19
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 892169
  • Archival Resource Key: ark:/67531/metadc873553

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1987

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 7, 2016, 5:37 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bodvarsson, Gunnar. Mechanism of reservoir testing, article, January 1, 1987; United States. (digital.library.unt.edu/ark:/67531/metadc873553/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.