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FORWARD

This sork concerns itself with some basic physical processes
pertinent to the interstellar medium. Ifs assumptions are'guided by
cbservational evidence to the extent possible. If a simplifying assumption
becomes necessary, it is adopted only if a more realistic one is not
expected to alter the qualitative nature of our conclusions.

The internal structure and, in particular, the relative length of
the sections of this dissertation is determined by three objectives.

First, the work must be sufficiently self-contained. This is main-
ly for the benefit.of a student of physics beginning his research on large-
scale interstellar phenomena involving the magnetic field. It accounts
for the relatively lengthy but critical review of the literature in § I
through IV and in § VI,

Second, all arguments presented must be related to the central
theme (namely, the formation, equilibrium, and stability of interstellar
clouds), which in turn bears on the process of star formation. It is
hoped that this will render the manuscript & coherent exposition.

Finally, enough original results must be explained clearly to
provide stimulation for the specialist (theorist and observer) for further
study of the subject matter (§ V and § VII). A special effortvis made to

interpret physically all formalism, assumptions, and conclusions.



~iv- LBL-3602

TABLE OF CONTENTS

Page
ABSTRACT ix
I. INTRODUCTION
A, MOBivation.........ovivviennsnncsnenncannnrnass Peeeesaaa. 1
B. Background and Perspective..........c.eveeceeee. terreanans 2
II. FORMATION AND EQUILIBRIUM OF NON-GRAVITATING INTERSTELLAR CLOUDS:
SMALL-SCALE CONDENSATIONS.
A. Thermal Instability
1. A steady-state model......covuinvuurcanens Ceieeeena 5
2. A time-dependent model............. e et 7
3. Criticism,...ovviiiiiiiiennneninns e Ceeniaane. 8
B. A Statistical Model........viivrerriinnennnnnrens eeenes 10
I1I. EVIDENCE FOR THE INTERSTELLAR MAGNETIC FIELD
A. Synchrotron Radiation...........coivnnienniennasnn Ceres 13
B. Polarization of Starlight................ eesanens ernenas 15
C. Faraday Rotation........ccoveeuun. esreareansannns N 16
D. The Zeeman Effect.......covvevererrrreronnoneesnannnnnsne 20
IV. THEORETICAL DESCRIPTION OF LARGE-SCALE PHENOMENA IN THE INTER-
STELLAR MEDIUM.
A. The Dynamical Equations
1. A system of thermal gas, magnetic fields, and
gravitational fields.......ccvviiieinaiannane, cheseas 24
2. The system with cosmic rays included............c... 26
3. Approximations of the energy equation........ N 30
B. Implications of Flux-Freezing
1. Two-dimensional geometry........coc.... Ceterennanenae .3l

2. Three-dimensionul geometry with axial symmetry: a
poloidal field..ooiir it iiiiiiniiininneerannnennsnenn. 32



V.

e LBL-3602

TABLE OF CONTENTS - contd.

Page
FORMATION AND EQUILIDRIUM OF NON-GRAVITATING INTERSTELLAR
CLOUD'S: LARGE-SCALE CONDENSATIONS
A. The Magnetic Rayleigh-Taylor (or, Magnetogravitational)
Instability
1. The basic physics of the instability............... 34
2, Retrospect.......eeesouss feretnesaeeeias Cheeneaeaens 38
B, Final States for the Magnetogravitational Instability
1. Do final states really exist?......coviveannnennn .. 40
2. Some features of the final states.........c..eueen. 42
a. Scale height
L, GBS cevvrecnerrensncarorinonns Ceteeeiteann 43
ii, Magnetic field.......c.evveveannvncnsnn v M4
b. Gas density...c.ceteerocnnscnnensacesvnsenrenns 45
¢. The ratio (a) of the magnetic pressure to the
B85 PreSSUTE......icoconavrsonsronansnansoscnrs .
3. Dependence on the assumed initial state............ 48
4. Comparison with observations....... censae sesreanse . 49
S, ROfinements.....c:veeeeseescesceccscnscosnescansas . 51

a. A gravitational field varying with altitude.... 5l
b. Alpha larger than unity....... - X
c. A non-isothermal equation of state........ ceses 55
d. The effect of cosmic rays
i. Modification of the instability criterion... 57
ii. PFormulation of an equilibrium problem....... 58

e. A non-cquilibrium initial state................. 67



V1.

VII.

~vi- LBL-3602

TABLE OF CONTENTS - contd.

Page
SELF-GRAVITATING INTERSTELLAR CLOUDS
A. Non-Magnetic Clouds: A Summary...................... 74
B. Flux-Freezing in Dense Clouds.............c..cuuuu.s. 78
C. Magnetic Clouds: Background
1. The Problem of Angular Momentum and Magnetic
Braking........c.iiiiiiiiii i eneeaaes 80
2. Non-Equilibrium Calculations
a. Mestel's Spherical Model................... 84
b. Strittmatter's Spheroidal Model............ 86
¢. A Comment on the Virial Theorem............ 88
3. Equilibrium Calculations..........ccecveuveenn, 89
a. A Thin Disk with a Magnetic Field Parallel
to its AXiS... i iininiiiiiiir i it 90
b. An Infinite Cylinder Aligned with the
Magnetic Field........c.civiiiiiininnraannns 91
c. An Axisymmetric Model Without Flux-
Freezing......ciiiivienrninsnensnnsncannens 93

NONHOMOLOGOUS CONTRACTION AND EQUILIBRIA OF SELF-GRAVITATING
INTERSTELLAR CLOUDS EMBEDDED IN AN INTERCLOUD MEDIUM:
FLUX~FREEZING

A.

Formulation ef the Problem

1.
2.

The Equilibrium Equations.............cvevennn. 97
Calculation of the Functions qk(o), k =1,2, 100

Approximate Description of the Intercloud
Medium........c.oiiiiiieinnteennssenenciasanens 101

Continuity Conditions Across the Cloud Boundary

a. Gravitational Field................ cheneen 102
b. Gas Pressure........ erees Cerebtatessesenae 104
c. Magnetic Field............ trerarssraceane 104

di The Function q{(¢)............. eraseraeren 105



~vii- LBL-3602

TABLE OF CONTENTS - contd.

Page
5. Boundary Conditions........eivvniviivenrnnennnnn. 106
B. A Reference (Non-Equilibrium) State .................. 108
C. The Dimensionless Problem.....c...coviinuviinnnnnns 110
1. The Basic Equations.............cioviiiivnnnnnn. 111
2. Boundary Conditions............o.ovvuiriuenninnns 112
3. The Reference State.........c.ooviviiirnannen ... 112
4. Free Parameters........ ..o iiiiinninnnnnannens 113
D. Method of Solution...... b ereee it e e e 114
E. Equilibrium States
1. A Preview of the Results........................ 116
2. Dependence on Ri........ ........................ 119
3. Dependence on'P° ................................ 123
4. Dependence on R R EETTR e 126
F. Discussion of Results and Comparison with
Observations...... ...ouees Cerenieeriacanaerarneaens 128
1. Some General Conclusions..............c.covevinn 129
a. The Slope of loch versus logpc ............ 129
b. Correlation between the External Pressuce
and the Central Density.................... 133
¢. The Ratio pc/ps .......... . evan. 135
d. Critical States......... Ceresencanbenrnaans 137

2. Returning to the World of Dimensional Quantities. 138

3. Line Widths in Dense Clouds................. vee. 144
4. Why is Star Formation Inefficient?.......... vee. 149
VIII. EQUILIBRIUM CALCULATIONS AND STAR FORMATION............... 151

ACKNOWLEDGEMENTS . . ..... cesrseenaans veereeraann Ceraveeaeannas vee. 153



-viti- LBL-3602

TABLE OF CONTENTS - contd.

Page
TABLE............. reteeeieeeeae, N 154
REFERENCES. ...... e N 155
LEGENDS FOR FIGURES.......cenuvesroaneceennnennnee e 163
FIGURES. ........... et e, 167
APPENDIX A: METHOD OF SOLUTION. ........ceovurnennn. e 197

APPENDIX B: PAPER I (reprint)..............ciovuvens esasrenns 204



-ix~

Static Equilibria of the Interstellar Gas

in the Presence of Magretic and Gravitational Fields

by

Telemachos Charalambous Mouschovias

ABSTRACT

No exact self-consistent, equilibriua calculations exist for
(any model of) the system of the interstellar gas and the frozen.
in magnetic field. On a large scale (~ 1 kpe) this system in af-
fected by the vertical galactic gravitationsl ficld, while on a
smell scale (~ 1 pc) the self-gravitation of the gas comes into
play and is responsible for the collapse of some clouds to form
stars, We determine acceéssible equilibrium states for the gas.
field system on both of these scales. In each case our main con-
clusions are sumzirized as follows.
(1) Final equilibrium states of the gas-field syster in the ga-
lactic gravitational field can be reached after a magnetic Ray-
leigh-.Taylor instability develops. We show that the tension of
the field lines will eventually stop their inflation. Even
though we solve a8 time-independent problem, we connect a final
state with the stratified initial equilibrium state by conserv-
ing the mass-to-flux ratio in each flux tube of the system. A
transition in time can therefore be made between them through
continucus deformations of the field lines.

Finsl states are lower in totsal energy than corresponding

initial states. Their properties depend quantitatively on the

Present address: Derertment of Astrophysical, Princeton University,
Princeton, New Jersey 08540,
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horizontal (but not so much on the vertical) wavelength of the
initial perturbation. A striking fe;tnre of the final states is
that the scale height of the gas increases (decreases) where the
ges density increases (decreases). The characteristics of our
final states are in agreement with observations in both our Gala.
xy sand in M 81,

{14) We determine squilibrium states for massive interstellar
clouds, whose electical conductivity is extremely .high. Self.-
gravity and the pressure of the hot and tenuous intercloud medi-.
um bind them, in general, against the disruptive effects of their
internsl pressure and magnetic stiresses, The surface of a cloud
is a free boundary determined by the requirement that there exist
pressure balance across it. We find that a cloud becomes oblate
with its major axis normal to the field lines. For a fixed mass
(external pressure) the flattening increases as either the mag-
netic field or the external pressure (mass) increases. For 2
given magnetic flux threading the cloud and s given mass (exter-
nal pressure), no equilibrium solutions exist if the external
pressure (mass) exceeds some critical valus, For example, for a
background field of 3.54 microgauss and an intercloud pressure of
1800 k deg/cnj, an H I cloud of temperature equal to 50 K will
collapse if its mass exceeds about 1320 solar mssses. In this
eritical state, the surface density through the center of the

3 3

- - 2
cloud is in the range 10.6 % 10 ~ - 23.5 x 10~ grams/cm de-
pending on the orientation of the line of sight.

w
We determine the exponent K in the relation B, < ?c

. betaeen the magnetic field and the gas density at the cloud cen-
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ter. It depends on the ratio of the magnetic and gzs pressures
in the cloud. It is certainly smaller than 2/3 (isotropic con.
traction) and it decreases further the stronger the magnetic
field. It is 1likely to bs less than 1/2 for much of the 1ife time
of a cloud.

An alternative mechanism capable of explaining large lire
widths in molecular clouds consists of oscilhtions of a (mag-
netic) cloud a= a whole about equilibrium states such as the
ones which we have calculated.

We also discuss problems related to the formation of inter-
stellar clouds ss woll us star formation., Most significantly, we
suggest that the observed inefficiency of the ptar formation
process cannot be attrituted to the birth of ar 0 7, or an earli.
er type star within s collapsing cloud, but can naturally t  ex-
plained by magnetic effucts in a8 contracting and, therefore,

nonuniform cloud.

N {
4
(Sum\tm)
Prefessor George B. Field

Digsertation Chairman
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of star formation must provide, it is nevertheless a €undamental sct insofar
as it aims at an understanding of the basic mechanical forces that

govern the behavior of the interstellar medium as it relates to star
formation.

The interstellar medium is a complex system far from thermodynamic
equilibrium, In it thermal, turbulent and ordered motions, radiation,
cosmic rays, magnetic and gravitaticnal fields store energies in comparable
densities, thus rendering a detailed dynamical description a formidable
task. The apparent complexities of the physical system necessitate
idealizations in any theoretical description. Seemingly important features
of the interstellar medium are isolated, abstracted and used as assumptions
in mathematical models, whose predictions are then compared with observations,
Discrepancies between predictions and observations lead to improvements of
the original assumptions and, consequently, to a more accurate representation
of the physical system. Models for the interstellar medium have gone through
many such iterations. Yet, the above three fundamental questions concerning
the formation, equilibrium, and stability of interstellar clouds and,

ultimately, the process of star formation remain unanswered.

B. Background and Perspective

This paper undertakes to decipher the nonlinear interaction among
gravitational, pressure, and magnetic forces under typical interstellar
conditions. The gravitational instability of a uniform (non-equilibrium)
gas was studied early in the twentieth century (Jeans 1928). The
investigation of the equilibrium of an isothermal sphere, bounded by a
constant external pressure and supported by internal pressure gradients
against self-gravitation, provided us with much quantitative information

such as the largest ('critical) mass that may still exist in equilibzrium
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at a given internal temperature and a fixed external pressure (Ebert 1955,
1957; Bonnor 1956; McCrea 1957). Studies of the equilibrium in a direction
parallel to the axis of symmetry of a gaseous, self-gravitating disk
(Spitzer 1942; Ledoux 1951) were extended to include the effect of rotation
and the growth of perturbations in the plane of the disk (Fricke 1954;
Safranov 1960a, 1960b; Goldreich and Lynden-Bell 1965). But it was only
recently that theorists paid due attention to the interstellar magnetic
field, which for many years had been considered as an undesirable impediment
to the processes of cloud collapse and star formation. At about the same
time that E. N. Parker (1966) was demonstrating that the interstellar gas,
which is partially supported by magnetic end cosmic-ray pressures against
the galactic gravitational field, could be subject to a magnetic Rayleigh-
Taylor instability that tends to accumulate the gas into clumps, Mestel
(1963) and Strittmatter (1966) were obtaining criteria for the collapse
of a cold, self-gravitating, magnetic cloud in a direction perpendicular
to the fieid. Thus, the role of the magnetic field in the formation,
equilibrium and stability of interstellar clouds was brought to the fore-
ground, The determination of equilibrium states for the highly conductinyg
interstellar gas has been restricted to models mathematically tractable
(Lerche 1967; E. N. Parker 1968a; D. A. Parker 1973), rather than models
preserving the essential features of the interstellar medium not the
least consequential of which is a magnetic field "frozen-in" the matter.

In pursuit of an understanding of the interplay among gravitational,
pressure and magnetic forces that may produce observable entities such
as clouds and stars, we proceed on two fronts. First, we study these
forces on a large scale. E. N. Parker's suggestion, that interstellar

clouds may be nothing more than cluamps of gas held in magnetic field
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"valleys' by the vertical gravitational field of the Galaxy, is a
reasonable possibility especially since (i) self-gravitation for most
interstellar clouds is several orders of magnitude weaker than that
required for binding, and (ii) observations show an intimate association
between the interstellar gas and field. We, therefore, seek final
equilibrium states for the gas-field-gravity system that Parker (1966)
showed to be unstable. Our choice is between a brute-force numerical
solution of the magnetohydrodynamic (MHD) equations and an elegant reduction
and solution of the magnetohydrostatic (MHS) equations. We follow the
latter path. It rewards us with an insight into the basic physics of the
problem. The challenge is to incorporate the assumption of flux-freezing
in a time-independent problem; and then to solve the resulting equation(s)
and compare the results with observations [see Mouschovias 1973, 1974
(Paper I); reprint attached]. Here, we shall extend the formalism of
Paper I to include the cosmic-ray gas. Contrary to previous expectations
(Parker 1968b), the cosmic rays may not inflate the field lines forever,
that is, an equilibrium state of the gas-field-gravity system may still be
possible in the presence of cosmic rays. Secend, we study the same forces
on a (relatively) small scale--that of an individual interstellar cloud,
held in a delicate balance by its internal pressure and a frozen-in field
againsf self-gravitation and an external pressure, exerted by a hot and
tenuous intercloud medium; the magnetic field threads both media, which
are highly conducting. Presumably, such a cloud would give birth to

stars upon collapse and fragmentation. We, therefore, obtain equilibrium
states for a wide range of pertinent physical parameters and we determine
“critical" values for them. Our endeavors on these fronts carry us a
significant step f>rward in our quest for answers to the aforementioned
three fundamcntal- qucstions. In both, our large-scale and small-scale

studies, we discuss possible rcfinements of our work.
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II. FORMATION AND EQUILIBRIUM OF NON-~GRAVITATING INTERSTELLAR CLOUDS:
SMALL-SCALE CONDENSAT1IONS

A. Thermal Instability

1. A Steady-State Model

Spitzer's (1951) suggestion that the cold and dense interstellar
clouds are in pressure equilibrium with a hot and tenuous intercloud
medium gained new impetus because of important theoretical and observational
developments. On theoretical grounds, Hayakawa, Nishimura and Takayanagi
(1961) concluded that, if a sufficient flux of low-energy (1 — 100 Mev)
cosmic rays is present, it can ionize and heat (by the produced secondary
electrons) the interstellar clouds up to the observed temperatures.
Field (1962) showed that a low-density, neutral intercloud medium can be
maintained at a high temperature (..lo‘ °K) by cosmic-ray heating, thus
providing the pressure necesskry for confining the interstellar clouds.
On the other hand, Heiles (19638) found evidence for an intercloud medium
with a density of 0.2 c-'3 and a velocity dispersion of 6 km/sec (implying
an upper limit on its temperature of several thousand degrees). Subsequent
work by Pikel'ner (1967), Field, Goldsmith, and Habing (1969), and Spitzer
and Scott (1969) established that two thermally stable, nearly isothermal
phases can exist in pressure equilibrium in the interstellar medium: a

3

hot, tenuous intercloud medium (n ~ 9.2 cm >, T ~ 10‘ °K) and cool, dense

clouds (n ~ 10° c-'s. T ~ 20 °K). What is crucial to the theoretical
establishment of the possibility of the existence of two stable phases
is a heating mechaniem directly proportional to the gas density [for
example, low-energy cosamic rays; soft X-rays (Bergeron and Souffrin 1971;
Habing and Goldsmith 1971)] and a cooling mechanism proportional to the
second power of the gas density (for example, collisional excitation

followed by radistive de-excitstion in spectral lines at which the medium
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is optically thin).

In this steady-state, two-phase picture of the interstellar medium,
matter '‘condenses' from the intercloud to the cloud phase if the density
of the nearly isothermal intercloud gas increases beyond some critical
value, thus causing a rise in pressure that cannot be maintained. The
critical point marks the onset of a thermal instability (Field 1965) that
proceeds almost isobarically and effects the transition from the tenuous
to the dense phase. This transition (assumed to take place at a fixed
degree of ionization) relieves the excess pressure so that tl.e ambient
pressure is maintained at the critical value (Field et al. 1969). If the
actual pressure of the intercloud medium is below the calculated value,
all interstellar matter must exist in the rarefied phase according to
this model. Since 21-cm observations have established the eristencec of
cold, dense clouds (for example, Clark 1965; Hughes, Thompson,‘and
Colvin 1971; Radhakrishnan et al, 1971) one must postulate that the
intercloud pressure is at the critical point. Under this postulate and
the assumption of hydrostatic equilibrium in the vertical gravitational
field of the Galaxy, Field et al. (1969) estimate that 75 percent of the
gas must be in the dense phase.

As a “phase transition" occurs it is possible for electrons to re-
combine onto hydrogen ions. Schatzman (1958) had studied an instability
resulting from a reduction in pressure that accompanies the recombination
process. Goldsmith (1970) and Defouw (1970), working independently,
extended Field's thermal-instability criterion to account for a varying
degree of ionization. Goldsmith followed the instability numerically
(in one space dimension) and observed the details of the transition from

the tenuous to the dense phase of this model of the interstellar medium,
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Once again there exists a critical valuve of the gas density. Beyond

this density, efficient radiative recombination of electrons onto

protons causes a rapid decline in the equilibirum temperature. Cosmic-
ray heating cannot keep pace with the rapid losses, and the pressure drops
below its ambient value while thc density continues to increase. Although
the new degree of freedom, that is, recombination, has altered the details
of the process, the net result is a transition from the tenuous to the

dense phase, as before.

2. A Time-Dependent Model

A thermal instability may also develop in a cooling (rather than a
nearly isothermal) medium regardless of the particular value of the ambient
pressure. The criterion for this instability was derived by Field (1965).
If the interstellar medium is heated by sporadic supernova bursts, its
subsequent cooling may be conducive to the formation of condensations.
This idea is the basis of what is known as the time-dependent wmodel of the
interstellar medium (McCray and Schwarz 1971). Schwarz, McCray, and
Stein (1972) worked out the details and pointed out the differences of
this model from the steady-state one. They emphasize %hat, because the
instability criterion depends on physical parameters (for example, cooling
rate) which are functions of time in this case, the possibility arises
that an initially growing perturbation may be damped at a later time,
and vice versa. This is confirmed by their numerical calculations, in
which they follow the time developmont of the instability in one space
dimension. Mansfield (1973) followed the instability in a spherical
geometry as well, having included heating due to ultraviolet photo-
emission of electrons from grains (Watson 1972). He also studicd in a

crude fashion the eflect of a uniform magnetic field on the condensation
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process. He found what Field (1965} and Goldsmith (1970} had already
concluded, that is, even a moderate magnetic field ( = 1 ugauss) renders
the thermal instability ineffective in all but one direction (parallel to
the field).

3. Criticism

The truth or falsity of their assumptions aside, and other agreement
or disagreement with observations notwithstanding, under the most favorable
of conditions both the steady-state and the time-dependent models of the
interstellar medium produce condensations with sizes (~ 0.0l pc to
~ 0.1 p<:)l two to four orders of magnitude smaller than the sizes of
most of the observed interstellar clouds. Moreover, the predicted 'cloud”
masses fall short of the observed ones by at least as many orders of
magnitude. Why condensations'predicted by these models continuc to be
referred to as "typical” interstellar clouds (for example, Mansfield 1973)
remains a puz:ile to this author.

A serious difficulty with the tim:-dependent model within its own
assumptions was pointed out by Goldsmith (1972): if each region of the
interstellar medium is indeed heated by a supernova explosion once every
106 years, within this time interval, density contrasts of less than four
are produced because the longer wavelengths of a perturbation cool nearly
isochorically. This is a direct consequence of the short cooling times
typical of the interstellar medium (see below).

In spite of their differences the two models are similar in that they

employ 5 thermal instability for the formation of cool, dense sheets of

1. Field (1970) recognized this difficulty: "If clouds actually form
by thermal instability, it appears that small ones are initially favored".
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gas in an otherwise uniform interstellar medium. This is the reason

for which they cannot account for interstellar clouds such as the observed
ones. Although perturbations with a broad range of wavelengths may grow
at almost the maximum growth rate, these wavelengths have an upper bound
determined by the fact (consistent with the force equation) that the
"condensation mode" (Field 1965) evolves almost isobaricaily. This means
that the upper bound on the fastest-growing wavelengths of a perturbation
is approximately that distance within which a sound wave can establish
pressure equilibrium in a time not exceeding the cooling time of the
medium, Typical cooling times for the intercloud medium are less than
106 years and bccome shorter as the gas density increases (Spitzer 1968a;
Jura and Dalgarno 1972). Therefore, with a sound speed smaller than

10 km sec'l, the wavelengths that can grow at a rate near maximum will be
less than 1 pc. Since the density of the intercloud gas is approximately
0.2 atoms cl's. the resulting condensation must have a size of about 0.01
pc if it is to reproduce the observed cloud densities (2 30 atoms cn's)
by one-dimensional compression along the magnetic field.

Aiming at obtaining larger condensations, Goldsmith (1970) considered
the growth of perturbations with wavelengths considerably larger than the
fastest-growing ones. He chose A = 300 pc (corresponding to an e-folding
time of about 107 years); but even so, the final condensation had an
extent of only 0.13 pc (at T~ 20 °k) ~ still a dwarf cloud. At any rate,
as we have slready mentioned, shorter wavelengths that correspond to growih
rates nesr the maximum one are favored by the instability. In addition,
the thermal instability for a perturbation with a large enough wavelength
to involve a sufficiently large mass will evolve more slowly than the
magnetic Rayleigh-Taylor instability (see below), in which the magnetic

field is instrumental (rather than a nuisance) in the formation of large
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condensations.

Schwarz et al. (1972) raised the point that inertial effects will
maintain the flow and, therefore, a condensation will continue to grow
for a long time after the instability shuts off. Valid as this point may
be, it nevertheless is the case that the final size of a condensation
does not usually exceed 1/2 of the wavelength of the perturbation that
initiated the instability. Since the observed dimensions of clouds
(for example, Heiles and Jenkins 1973, Heiles 1973) are often larger
than the wavelengths which can grow with an e-folding time less than 107
years, and since n 2 30 cm™3, the thermal instability will not account for

the formation of these condensations even if inertial effects are included.

B. A Statistical Model

The complexity of the interstellar medium and the apparent random-
ness in the motion of clouds and in their distribution in space led Oort
(1954) to suggest that a theoretical description of the interstcllar
medium must be statistical in nature. Once some low-mass clouds form, it
is postulated that they collide inelastically and coalesce to form larger
clouds. The process continues until a critical mass, corresponding
to gravitational instability, is reached. The collapsing cloud presumably
fragments and forms stars, the brightest of which ionize the remaining
gas, thus generating conditions assumed to be appropriate for the forma-
tion of second-generation, low-mass clouds. Field and Saslaw (196S)
formulated these statistical ideas into a mathematical model. They made
the following assumptions. (i) Only small clouds of the same (“unit’)
mass are created. (ii) All clouds have the same cross section and the
same speed and are isotropically distributed in velocity. (iii) All

collisions between clouds are inelastic, so that agglomeration is the
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inevitable outcome.
Despite the simplicity of its assumptions, the statistical model

'3/2) in rough agreement with

predicts a mass spectrum for clouds (m
observations. Because it invokes a binary collision process ultimately
leading to star formation, the model provides a theoretical basis for
Schmidt's (1959) empirical law, which states that the rate of depletion
of gas because of star formation varies approximately as the second power
of the gas density. [For an alternative theoretical foundation of a
similar dependence of star formation on the gas density, see Mouschovias,
Shu, and Wocdward (1974), Paper II.] Another statistical calculation by
Penston et al, (1969) predi.ts a maxwellian velocity distribution for
clouds and & mean speed varying as n'llz. For the purpose of this dis-
cussion, the important point is that the statistical model does account
for a wide range of cloud masses provided, however, that upon its formation
& "unit” cloud has mass of the order of 10 ”e' This implies that a thermal
irstability cannot be responsible for its form:tion in the presence of
the interstellar magnetic field (= 3 ugauss) because the instability can
develop only along field lines -- see § IIA2 above.

Heiles (1973) questions the very foundations of the statistical model.
He points to cbservational evidence that cloud velocities "are highly
organized with respect to the [interstellar] magnetic field," and that
"one gains the impression that the gas is moving along the magnetic field."
Hie also questions, on observational grounds, the random distribution of
clouds in space assumed by the stn‘isticul model. Clouds are often
found in cloud complexss [see, for instance, Raimond (1966); Kerr (1968)
and references therein), and long filamentary structures aligned with the

magnetic field are prominent features of the interstellar medium, It may



-12- LBL-3602

be, howevir, that the cloud model is valid within the cioud complexes
themselves (van Woerden 1967), although Heiles doubts even that.
Overwhelming observational evidence.demonstrates not only that
interstcllar magnetic fields exist, but also suggests tha; magnetic
forces are comparable to gravitational and pressure forces. Hence, it
should not be surprising that models ignoring magnetic effects run into
difficulties sooner or later. Before we discuss the role of the magnetic

field in the formation, equilibrium, and stability of interstellar clouds,

we turn to a critic 1l review of the evidence for its existeice.
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IIT. EVLDENCE FOR THE INTERSTELLAR MAGNETIC FIELD

With very few exceptions, our knowledge of astrophysical objects and
proce<ces stems from analyses of radiation received at the earth. The
interstellar magnetic field does not belong to the exceptions. It may
be instrumental in the production of radiation, or it may modify radiation

propagating through the region where the field exists.

A. Synchrotron Radiation

Synchrotren radiation is produced by highly relativistic electrons
gyrating in a magnetic field. It is highly directional about the
instantaneous electron velocity, so that the line of sight must lie in
the plane of the electron's orbit if the radiation is to be observed at
all. The radiation from an ensemble of electrons can be recognized by
its power-law spectrum and by its high degree of linear polarization,
with the electric field normal to the plane defined by the magnstir field
and the line of sight (CGinzburg and Syrovatskii 1965; also, Bless 1968).
On these grounds and on independent evidence for the existence of cosmic-
ray electrons with energies around 1 GeV (see review by Meyer 1969), the
synchrotron mechanism accounts for a major fraction of the background
radio continuum emission in our galaxy (for example, Spitzer 1968a and
references therein; compilation of observations from 10 MHz to 400 MHz
by Daniel and Stephens 1970).

Observations of synchrotron radiation establish the existence of an
interstellar magnetic field. But to deduce the mapgricude of the field,
one needs to introduce a number of dubious assumptions, the most common
of which is equipartition between the energies stored in magnetic fields
and in cosmic-ray protons. [At a given energy per particle, the number

of cosmic-ray electrons is only about 2% that of the protons (Earl 196}1;
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Meyer and Vogt 1961).] Additional uncertainties enter in estimating the
size of the emitting region. For instance, the extent of the emitting
region at high Galactic latitude is still controversial, with some authors
claiming that the background radio continuum is produced in a disk of 2 kpc
thickness, and others preferring a radio "halo" having a diameter of 20 kpc
or so (see discussion by Woltjer 1965). Others yet speak of a thin-disk
and a fat-disk component of the nonthermal radiation (Mathewson, van der
Kruit, and Brouw 1972). Even if the size of the emitting region is known,
however, additional assumptions concerning its internal structure are
necessary in order to estimate the strength of the magnetic field. [The
measured intensity of the radiation at some frequency is proportional to
the line integral (along the line of sight) of the product of the number
density of relativistic electrons and some power of the perpendicular (to
the line of sight) component of the magnetic field - this exponent is
usually around 1.8.]

Under the specter of the above uncertainties, large-scale magnetic
fields ranging from 10 ugauss to 50 ugauss are deduced (Woltjer 1965;
Davis and Berge 1968). Daniel and Stephens (1970) used the fluxes of
cosmic-ray electrons and synchrotron radiation observed at the earth to
deduce an energy spectrum for electrons with energies 5 GeV (because the
observed one has been modulated by the solar wind) and to show that this
spectrum joins smoothly with the observed spectrum above 5 GeV (which does
nat suffer solar modulation) only if the magnetic field is in the range
6 —~ 9 ugauss. They assumed, howevér, that the region of emission was
homogeneous. Their method will give larger fields if the size of the
region of emission is reduced. There is evidence for enhancemert of the
synchrotron emission associated with spiral arms (for example, see Price

1974 and references therein). On the other hand, since regions of strong
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fields are overweighted if the cosmic-ray density is nearly uniform,
the background interstellar field may actually be weaker than the cne
deduced by Daniel and Stephens. Weaker fields are supported by

observations of Faraday rotation (see below).

B. Polarization of Starlight

The polarization of light from distant stars (Hall 1949; Hiltner 1949)
and its correlation with interstellar reddening led to the generally
accepted hypothesis that it is produced by elongated dust grains aligned
dynamically due to the presence of a magnetic field (Pavis and Greenstein
1951; Davis 1958; Miller 1962). The grains are presumed to be paramagnetic
and to have a complex index of refraction. Jones and Spitzer (1967) used
statistical ideas to arrive at the same conclusions. We reproduce the
essence of their arguments here.

In the absence of a magnetic field a prolate grain in kinetic equilibrium
with the surrounding gas will have equal rotational kinetic energies about
each of its principal axes. Since the angular momentum about each principal
axis is proportional to the square root of the moment of inertia about
that axis, a grain will tend to rotate mainly about an axis perpendicular
to the axis of symmetry. In the presence of a magnetic field, the axis
of rotation will tend to align with the direction of the field; other-
wise dissipation of angular momentum due to magnetic torques will ensue.
Thus, the axis of symmetcry (major axis) of the prolate grains will tend
to be perpendicular to the magnetic field. It is essential in these con-
siderations that the grain temperature be less than the gas temperature,

80 that the system will not be in thermodynamic equilibrium, that would
destroy the alignment through collisions with gas atoms. The magnetic

field needed to sufficiently orient the grains is of the order of 10 ugauss
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although a weaker field (1 ugauss) would do if the grains were ferro-
magnetic (Jones and Spitzer 1967).

As starlight propagates through interstellar space, the component of
the electric field which is perpendicular to the major axis of the grains
(and, therefore, more or less parallel to the magnetic field) is less
efficiently absorbed by these particles. Consequently, a map of the
observed polarization vectors will also reveal the topology of the inter-
stellar magnetic field. In order to obtain the magnitude of the field
from extinction and polarization measurements, one must know the gas
temperature and density and, in addition, such uncertain quantities as the
shape, composition and temperature of the grains. Although our under-
standing of the nature and evolution of interstellar grains is increasing
rapidly (see review by Aannestad and Purcell 1973), it is wise to settle
for obtaining the general topology, rather than the magnitude of the
field by this method. We consider it very revealing that the field lines,
as unveiled by polarization measurements, exhibit an orderly large-scale
behavior, but have '"waves'" or "arches" over distances of a few hundred
parsecs (Mathewson and Ford 1970; Davis and Berge 1968). Serkowski (1973),
however, observed a field fluctuation over a scale of 0.3 pc in the direction
of the star cluster Stock 2. On the other hand, reports of fields with
magnitude as farze as 1 mgauss (Beichman and Chaisson 1974) should be
regarded as tentative until confirmed or refuted by some other method of
measurement — especially since they depend on scaling laws relating the
magnetic field and the gas density which our work shows to be incorrect

(see § VB2c).

C. Faraday Rotation

It is well known that a tenuous plasma becomes optically active (or,
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birefringent) in the presence of a magnetic field. Faraday rotation
refers to the rotation of the plane of polarization of a linearly-
polarized electromagnetic wave, or to the rotation of the major axis
of an elliptically-polarized wave passing through such a medium. The

angle of rotation over a distance L is given by (Spitzer 1968a, p. 51)

O

. 2 . L 2
a9 Rn AT = (0.81 6 ds n, B cos¢) A rad, 1)

where the wavelength (A) is measured in meters, the eleétron density (nc)
in cn's, the magnetic field (B) in ugauss, and the distance along the line
of sight (s) in parsecs. The angle between B and the propagation vector,
i, is denoted by ¢. The sign convention is such that 4@ is positive for
right-hand rotation along the direction of propagati?n. The rotation
measure is- denoted by R-.

Since typical rotation measures for the interstellar medium fall in
the range 1 ~ 100 rad l-z, it is clear that Faraday rotation is negligible
for optical wavelengths. In principle one can use optical polarization
to establish a standard and then measure A8 for radio waves. Unfortunately,
not many radio sources emit in the optical portion of the electromagnetic
spectrum. To obtain R- (see discussion by Davis and Berge 1968) one is
forced to measure A9 for a least two radio wavelengths. However, because
of the indistinguishability of rotation angles differing by r, and because
the position angle of the plane of polarization at the source is not usually
known, one must measure A6 at several wavelengths, plotting the observed
position angles as a function of Az‘nnd fitting a straight line through
the points. In principle, several points differing by multiples of =
must be plotted for each observation, and that set must be selected which
fits .a straight line best., The slope of the line gives R-. and its

extrapolation to 32 = 0 gives the position angle at the source.
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Once the rotation -efsure is known, onc may obtain thc mcan value
of the magnetic ficld along the linc of sight to the obscrved radio
source only if the distance to the source and the interstellar electron
density arc known. To obtain the latter would have been v;ry difficult
without the discovery of pulsars. Regular signals from pulsars reaching
the earth exhibit a dispersion effcct (that is, a differcnce in the arrival

time of the left-handed and right-handed circularly polarized modes) that

can be precisely acasured. This is given by

2 L
P 2
At = — ds n A ' (2)
(2 e ¢ ‘({ .)
.
L
where all units are in ¢gs. The dispersion measure, D- [ ds ne» is
0

obtained from a single measurement and it constitutes a direct measure of
the column density of electrons along the line of sight. If R- and D.

are measured for the same source, one can obtain the mean value of the
magnetic field along the line of sight, < l"> . This is weighted by the
electron density in the region between the source and thc observer. (The
contribution of the earth's ionosphece is taken into consideration.) Also,
reversals in the direction of the magnetic field would produce cancellations
in 49, so that the measured <B"> would be smaller than thc general inter-
stellar field. Such irregularities in the field may be detected, however,
if measurements of starlight polarization and Faraday rotation are com-
bined, since the two methods measure two mutually orthogonal components of
the magnetic field.

Faraday rotation measures have also been obtained and analyzed for
many extragalactic radio sources (Morris and Berge 1964; Gardner and
Davies 1966; Gardner, Morris, and Whiteoak 1969; Wright 1973). These
observations yield <ne l"> rather than <B"> itself, since an inde-

pendent determinaticn of <n,> is not usually made. But the product
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<n, I"> is very useful especially since extragalactic radio sources
are distributed all over the celestial spherc.

Wright (1973) recently analyzed the rotation mcasurcs from 354 extra-
galactic radio sources, and Manchester (1974) did the sanc for 38 pulsars.
Their results are in good agreement, indicating a large-scalc magnetic
ficld directed "oward L = 90° (both above and below the Galactic plane).
The direction of the field is in fair agreement with that determined by
Appenteller (1968) from interstellar polarization obsecrvations for stars
near the south Galactic pole. He found that the mean dircction of the
polarization vectors was L = 80°. According to thesec workers, the local
helical field, which was suggested in order to explain the starlight
polarization data (Hornby 1966; Mathewson 1968; Mathewson and Nicholls 1968:
Mathewson 1969), is in conflict with the Faraday rotation observations.
This resolves a long-standing theoretical dilemms: a nonvanishing wmagnetic
field in the Galactic plane, having opposite dircctions above and below,
implies that there exists a current sheet in the plane.

The magnitude of the field determined from Farsday rotation measurc-
ments lies in the range 1 — 3 ugsuss. Superposed on the general back-
ground field, both Wright and Manchester find field "irregularities”
with field strength compizable to that of the background field. The
typical scale of the "irregularities" appears to be a few hundred parsecs.
This is significant when combined with the interpretation of data on
rotation measures of extragslactic radio sources given by Gardner, White-
oak, and Morris (1967). They found it n:cessary to assume that magnetic
field lines protruded from spiral arms at least at some regions. However,
they suggested that gas flow was responsible for pulling the field lines

away from the Galactic plane. In Paper I we attributed the arches in the
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field lines observed in the solar neighborhood to the development of the
magnetic Rayleigh-Taylor instability, and we argued that field lines are

inflated only because gas is drained from their raised portions.

D. The Zeeman Effect

The splitting of the 21-cm line into three components in the presence
of a weak (on laboratory standards) magnetic ficld raises the possibility
of studying the interstellar magnetic field in the most-dirsct manner.
The frequency separation between the two shifted, or o, componcnts of the
line depends only on the component of the magnetic field in the direction
of propagation, and is given by
- v, = e B cos¢ )

av = Av 1 >*m ¢ °
e

+1
The notation is the conventional one. If we neglect terms of order

-QI‘P = 1/1836 << 1, the split of the hyperfinerstructure energy levels

due to & weak magnetic field, B, is given by o€ = up &g ng B, where

ug = dﬁ/Zlec is the Bohr magneton, mg is the azimuthal quantum number,

and s is the Landé g factor. The orbital angular momentum vanishes in

the ground state (L = 0), and g * (£°(f° + 1) « §°(3°+1) -i“(i" + 1)]/
£f°(f° + 1) » 1 because j° = i° = 1/2. Since IE =0, *1, eq. (3) follows.
The subscripts +¢] and -1 in eq. (3) refer to values of mg. Numerically,

the split Av is equal to 2.8 Hz per ugauss for propagation along the field
(¢ = 0). Since line widths are typically measured in kHz, observations of
the Zeeman effect in hydrogen are very difficult, and special techniques
become necessary. [See Davis and Berge (1968, pp. 762-765) for an

excellent discussion and for the reason why the transverse Zeema. effect

is even more difficult to detect.] As in the case of Faraday rotation,
only'the wean field along the line of sight is measured. However, fields

measured through Teeman observations may be indicative of conditions within
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interstellar clouds rather than representative of the ambient interstellar
fields (see below).

Among the many attempts to observe the Zeeman effect ip interstellar
clouds, only few produced positive detections. Most measurements put
only upper limits on the magnetic field, leaving even the direction of
the field undetermined. Although observers and thcorists gencrally agrce
that our knowledge of the interstellar field that rcsulted from Zceman
measurements is meager, we take much interest in the fact that both the
few positive detections and the upper limits reveal fields consistently
weaker than those expected on theoretical grounds. The usual argument
is that, under the assumption that the magnetic field is frozen in the
matter.z the background interstellar field would be enhanced by a factor
(nclnicjzls during the formation of clouds (of density nc) through spherical

contraction and condensation of the intercloud medium (of density “ic)'

3 should have fields

It follows that clouds with densities 30 — 1000 cm~
in the range 85 - 300 ugauss, with 100 ugauss being a rather typical
value. No such fields have been observed (see Verschuur 1971 and references
therein). The few positive detections are summarized in Table 1, which
is taken from Verschuur (1974).

Spherical, isotropic contraction has been taken so seriously that a

straight line with slope ejual to 2/3 has been frequently forced through

points of log B versus log n, plots (for example, Verschuur 1970a), even

2. The conductivity of the interstellar medium is given by a—~1o7 'l‘:"/2
(Spitzer 1962}, where T is the temperature. The dissipation time_for
the magnetic fisld over a characteristic scale & is 1 = 4 wo L2/c2.
Since T = 50-10" °K and L =10 pe, then 1 > 102 years! Therefore,
flux-freezing is an excellent assumption. However, the motion of ions
(and the field) through negtrali must be considered (Spitzer 1968a) for
densities larger than ~10° cm™ (Nakano and Tademaru 1972) -- see
discussion in § VI below.
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though a linc with a slope of 1/3 would fit the (uncertain) data at
least as wcll. We shall show in 5V1I that weak ficlds must be the rule
rather than thc exception, thus removing the discrepancy between observa-
tions and theoretical expectations.

Atomic hydrogen is believed to b. converted to molecular hydrogen
in the densest clouds, in which many moleccules were discovered ‘sec
reviews by Heiles 1971; Rank, Townes, and Welch 1971; Solomon 1973,
Zuckerman and Paimer 1974). The magnetic field within the molecular
(or, dust) clouds is expected to be relatively high, since the gas

density often exceeds 10° on73.

The field may be measured through
Zeeman observations on the 18-cm line of OH. One such measurement by
Turner and Verschuur (1970) yielded an upper limit of about 102 ugauss,
which Heiles (1971) finds rather small compared to (popular) expectations.
This contrasts sharply with the upper limit of 5 ugauss obtained for
another dust cloud (Verschuur 1970b) when the measurement was performed
on the 2l-cm line, winich is seen in self-absorption. To reconcile the
two, Heiles (1971) suggests that the hydrogen exists in a thin shell
around the molecular cloud, so that the 21-cm result does not refiect the
physical conditions inside the dust cloud. This point is well taken. Yet,
it is our view that the smaller field, even uncorrected for projection
effects, may not be inconsistent with theoretical expectations based on
our calculations of equilibria of self-gravitating, magnetic clouds.

There are additional, indirect methods for obtaining the interstellar
magnetic field (see Woltjer 1965; van de Hulst 1967; Davis and Berge 1968),
but they yield such uncertain estimates that their discussion here is not

warranted, They are based mainly on the virial theorem (for example, see

Biermann and Davis 1960) applied to various regions of, or the entire inter-
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stellar medium. We shall discuss some of the shortcomings of the

virial theorem in § VI (see alsoc Mestel 1965).
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IV. THEORETICAL DESCRIPTION OF LARGE-SCALE PHENOMENA IN
THE INTERSTELLAR MCDIUM

A. The Dynamical Equations

1. A System of Thermal Gas, Magnetic Fields, and Gravitational Fields.

We mentioned in§ I that the interstellar medium is such a complex
system that a complete theoretical description is impossible at present.
However, the range and relative magnitude of some physical paramcters of
the system are such that the framework of a usefu! theoretical description
may be specified. First, as we have already noted, the electrical vonduc-
tivity of the medium is so high (109 - 103 sec”™!) and the scales of
interest are so large (lo19 - lo22 cm) that we may assume that the
magnetic field is frozen in the ionized matter. Furthermore, the excellent
coupling between electrons and ions on the one hand [u_,,, (e-i)

-7

~10 sec'l] and between ions and atoms on the other [“boll (i-a)

-~-10-9 sec'l] permits us to treat the three-component gas as a single,
compressible fluid.

When the phenomena of interest occur on relatively large scales
(for example, formation of interstellar clouds, motion of clouds through
the intercloud medium, cloud-cloud collisions, cloud collapse), one may
specialize to very long-wavelength hydromagnetic disturbances. In this
regime, in which sn electron collides many times before it is forced to
reverse its direction by the uxcillating electric field of the disturbance,
collective plasma effects become unimportant {up ~ 103 sec'l). Although
collision frequencies are relatively large (compared to the frequency of

14 sec'l). they are nevertheless much

the hydromagnetic wave, w ~ 10~
smaller than gyrofrequencies (”c ~ 10 sec'1 for electrons). Hence,

diffusion across the field (which would result from collisions between
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opposite charges before a gyration is completed) may be neglected. In

susmary, we have the inequalities

W > uc >> ucoll. >> w. (4)

For scales much larger than collision mean free paths we may also neglect
viscosity and thermal conduction, and we may write the magnetchydrodynamic
(MHD) equations appropriate for cur system.

We consider a conducting gas of density p, pressure P, and temperature
T embedded in a magnetic field Banda gravitational field E. derivable
from a potential ¥. Both the gas and the stars, whose density (p,) is
known from observations, may contribute to ¢. The gas has abulk velocity
V. A current density 'J' maintains the frozen-in field, which is derivable
from a vector potential K. The entropy per gram of matter is denoted
by S, lndz represents the net rate of energy loss (losses minus gains)

per gram of matter. The MHD equations are

mass conservation: :: +p Vo v =0 (5)
force equation: —— = - - p'v'w + z x 8 (6)
energy equation: F = . px(p, T (7)
ideal-gas law: p= £ kT (8)
B
flux-freezing: ﬁ -7 x (v x i) (9)
Poisson equation: vzw = 4vG (p, + o) (10)
Ampere's law: ¥ x 3 . LA (11)
definitions: - -Vo (12)
B-9x1 (13)
1

S = ==

y-1

;yx

(P %) + const.

(149)
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In the above equations m is the mcan mass per particle; k is the Boltzmann

constant; c¢ is the speed of light in vacuum; and v = 5/3. The comoving

time derivative is defined by d/dt = 3/3t + V.. Spitzer (1962) pives
a detailed discussion of some fine points in the assumptions behind the
MHD equations. References already cited in § ITA discuss the loss function

in the energy equation.

2. The System with Cosmic Rays Included

The dynamical effects of cosmic rays in the Galaxy have been the
subject of intensive investigation for several years. A long serics of
important papers discuss the conditions under which cosmic rays, considered
as a very hot, collisionless plasma, may be described in the MHD approxi-
mation. Three excellent reviews (Parker 1968b, 1969;; Lerche 1969) point
out what phenomena are excluded when such a description is adopted, but
they argue that the MHD description is the proper one for cosmic rays in
the 8alactic environment., Our new approach to magnetohydrostatic (MHS)
equilibrium configurations will shed light on the assumptions, on which
some previously derived consequences of the existence of cosmic rays in
interstellar space are based. In particﬁlar, the conclusion that cosmic
rays will inflate the interstellar magnetic field indefinitely (Parker
1965a, 1968b) will be discussed critically in §VBS5d. Here we ¢ :aw from
the reviews mentioned above and we summarize the MHD description of the
cosmic-ray gas.

In the absence of a magnetic field, the cosmic-ray pressure is main-
tained isotvopic to within ~1% by various rapidly growing (T ~ 103 years)
relativistic micro-instabilities (for example, see Lerche 1969). 1In
introducing the magnetic field, we shall restrict our attention to very

long-wavelength (much larger than gyroradii} hydromagnetic waves. In this
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regime and for slow bulk motions (vc: << cz), Parker argues that an
isotropic cosmic-ray pressure is a fair approximation in most astro-
physical situations even in the presence of a magnetic field. It follows

from this and the first law of thermodynamics that, under adiabatic

conditions,
dp (’ P )
cr erl 3.3
+ {p  + —= v =0, (15}
dt cr c2 er

The quantity Per denotes the mass density of cosmic rays. (The rate of

change of the total energy of cosmic rays in a volume element &V is

d(pg, C° 6V)/dt = -P_ d(§V)/dt. Ome then uses the relation d(sV)/dt =
+ =+ . . .

&v v - Vep tO derive eq. [15].) A relation between Pcr and Pep is not

simple if a collection of relativistic particles is considered, because

each particle contributes to the speed of sound,
- 1/2
Ccr z (d Pcr/dpcr) ’ (16)

in a manner that depends on its own Lorent:z factor, W E G?mocz. But in

the extreme relativistic case, we have the relation

1 2 . 2
Por ® T Por © Z 0 Cope 7
Then, it follows ‘hat
d en P d tnp dtnn
er . cr . 4 er (18)
dt dt 3 dt

Because the cosmic rays and the thermal gas are tied to the magnetic

2

field, their bulk velocities vcr and v (v:r, ve <« c2) will have equal

components in a direction perpendicular to the field. In the long-wave-

length limit, the electric field 65 in a frame with respect to which the

thermal gas and the cosmic rays have velocities v and V;r, respectively,
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is given by -
> v
E--{-xi--—z’«xi. (19)

Thus, an equation identical to (9), with v replaced by ;cr' holds for
the cosmic-ray gas as well.

If the motion of the cosmic-ray gas along field lines is completely
decoupled from that of the thermal gas (cf. Kulsrud and Pearce 1969),
one may write the force equation for cosmic rays in a direction parallel

to the field as .

P d(v. )
cr cr
(pcr * —ci)( 4 )" | vll' Per = Per vI'I v (20

Actually, gravitational forces on cosmic rays are negligible and the
last term may be left out of equation (20). To show this, we may compare
the magnitudes of the last two terms of equation (20) and make use of

equation (17):

- 2
1oer ¥ 0l °crﬁll ol favl Vescape <1
= —-— .
2 2 2
WN Poyl ccrlv” Pcr! Cer Cer

The presence of cosmic rays introduces a "suprathermal mode" (Parker 1965b)
in addition to the usual fast and slow hydromagnetic modes. It represents
a sound wave in the cosmic-ray gas propagating along field lines with
speed Ccr (see eq. {17]). The suprathermal mode is independent of the two
hydromagnetic modes except for propagation nearly normal to the field,
in which case the fast mode collapses to zero and the su'pratherlal mode
takes over.

The nearly instantaneous communication of cosmic rays along field

lines establishes pressure equilibrium in the cosmic-ray gas over
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a distance L in a time L/Cc!_z L/c. If L is as large as ! kpc, this time

is zlo11 sec. This is much smaller than the time scale of the hydro-

14 sec. We may

magnetic phenomena of interest to us here which is =10
therefore ignore the inertial effects of the cosmic-ray gas and we may
write that

3 = .+ =
V, P, : B Ve /B=0 (213)

as a further approximation to equation (20). Equation (2la) states that
the cosmic-ray pressure is constant on s field line, but it does not
determine its value, which is different for different field lines. In
§VBS5d we shall show how to calculate Pcr at the position of any field line
without reference to equations (15) and (17). For now, we note that

013 o

equation (21a) will be exact at equilibrium insofar as the hot (Tcr ~1 K)

and tenuous (n_. ~ 10710 cm’s) cosmic-ray gas is not affected by the
galactic gravitational field (g ~ 1070 cn/secz).

It remains to specify how cosmic rays will modify the force equation (6)
in a direction normal to B. Once this is done, the system of MIHD equations
including cosmic rays will be closed. We write the force equation for
cosmic rays in a direction normal to the field by neglecting the gravi-

tational term because of the reason given above:

P ai_ )
p_.+ _€r er’] . . T
(o ) (5, - -t et (b

where 3;r is the current density due to cosmic rays alone. Because of
eq. (21a), the term - §chr may be replaced by - ¥ Pcr in eq. (21b). The
resulting equation must be combined with eq. (6) - the left-hand sides
of the two equations must be added together, and so must the right-hand

sides. We note, however, that p_. = 3 Pcr/c2 (see eq. [17}) is much
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smaller than p; in a typical HI recgion pcr/p ~ 10'10. Hence, we may

neglect the inertial term in eq. (21b), which is combined with (6) to

yield
dv 2 1 > + T 3
Pac = - P - VPCr - PV + () ¢+ Jcr) x B/c. (21c)

Finally, eq. (11) undergoes the obvious modification
Txd = @we) G, (214)

The approximation expressed by eq. (2la) was also used by Shu (1974),
who asserted that eq. (2la) is sufficient to categorice the cosmic-ray
gas and that the system of MHD equations is closed without reference to
eqs. (15), (17), and (18). In view of our remark above, namely, that
equation (2la) states that Pcr is constant on a field line without specifying
its value, it is clear that ehs. (15) - (18), which specify how Pcr changes

in time, are also needed in order to close the system of MHD equations.

3. Approximations of the Energy Equation

We have already noted that virtually all information received from
the Galactic and extragalactic space comes in the form of photons. It
is natural, therefore, that the energy equation is the most exhaustively
studied one in astrophysics. In our work we shall focus on Newton's laws
as supplemented by Maxwell's equations. The force equation, and in
particular magnetic, pressure, and gravitational forces, will be the
subject of our studies. All thermodynanics will be dumped into an
equation of state P = P(p)}. We shall assume an isothermal equation of
state frequently and then we shall generalize our formalism to the
case P = P(p) without actually solving the more general problem. In

view of the meager theoretical (as well as observational) understanding
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of the phcnomena which we shall study, we offer no apologics for this
procedure. We shall discuss the priorities in refining our work at
the end.

We begin with the derivation of some (known) implications of flux

freezing (eq. [9]), upon which we shall call later.

B. Implications of Flux-Freezing

1. Two-dimensional Geometry

If v and B are confined to a plane (x,y) and all quantities arec
assumed independent of z, we may set Ax = Ay = 0 without loss of

generality. Then we have that

I & e, A, (x,y) = o Alx,y). (22)
Since i'may be written as
[ -Ez x VA, (23)
it follows that
B.-¥A = o, (24)

so that A(x,y) 1is constant on a field line. Moreover, we may write

eq. (9) in terms of X as

R _ =
3? = VvV X i * 3k, (25)

where £ is an arbitrary scalar function of x and y. Both Rand v x 8
have z-components only. Therefore, 3: must vanish.
By using (23) in (25) and expanding the vector triple product, we

obtain

.:%.. -4, (0 - Ta) « T e, + ).



-32- LBL-3602

Since ez Vs 0, we make use of (22) to find

- dA_ - 3A
e, dat ° %Gt

+v .U =0. (26)
Hence, in addition to being constant on ficld lines, A is also a constant
of the motion. In this geometry, the magnetic flu- between two neighboring
field lines, characterized by A and A + §A, is equal to §A. So eq. (26)

is a statement of conservation of magnetic flux through any surface co-

moving with the fluid.

2. Three-dimensional Geometry with Axjal Symmetry: A Poloidal Ficld

Conclusions similar to those described by eqs. (24) and (26) may also
be derived in the case of a three-dimensional geometry with axial
symmetry (all functions assumed independent of 4). ?e let r be the
{cylindrical) radial coordinate. Once again, eq. (25) follows. Now A

and ; x i are in the azimuthal direction. Hence, VE = 0. We write

vxd

ve@xd) 7
T T - DH--D-RK-H-Kx TxV).

Since V is in the (r,z) plane and R has only a ¢-component, the first term
on the right-hand side of eq. (27) vanishes. The third term may be written

1

@& -HY - Ay T % (@, vy * &, v,)

A a1 (28)
= e. r A. vr.
The last term in (27) vanishes because ¥ x ¥ is in the ¢-direction. Al-

together, then, we have

or
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We, therefore, conclude that

de
-L-l‘d:“ : e (29)

where A = A.. Eq. (29) is a statement of flux conservation in the
present geometry. It is easily shown directly that the magnetic flux
through a contour, described by the equation r = constant, is equal to

2 w¢. Direct calculation also shows, by using eq. (13), that

B.Veso, (30)

so that ¢ is constant on a magnetic surface. We see that flux-freczing
in s three-dimensional geometry with axial symmetry implies relations
similar to those in the two-dimensional rectangular geometry, except

that ¢ = rA replaces A.
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V. FORMATION AND EQUILIBRIUM OF NON-GRAVITATING INTERSTELLAR
CLOUDS: LARGE-SCALE CONDENSATIONS

A. The Magnetic Rayleigh-Taylor (or, Magnetogravitational) Instability

1. The Basic Physics of the Instability

Parker (1966) argued on the basis of the virial theorem that the
interstellar magnetic field is confined to the galactic disk only by
the weight of the highly conducting interstellar gas. As long as the
field lines are parallel to the galactic plane, an equilibrium state is
possible. At any distance from the axis of galactic rotation, a gas
element is acted upon by a centripetal force appropriate to that distance;
this is the only force necessary to keep the gas element in orbit about
the galactic center. In a direction perpendicular to the galactic plane,
the gas 1s distributed in such a manner that, at each altitude, the forces
due to its pressure gradients, aided by the magnetic-pressure gradients,
balance the vertical gravitational forces. Self-gravitation of the gas
is neglected in this picture because the mass in the form of gas is only
a few percent of the mass in stars.

Mathematical simplicity and observational evidence that the magnetic
field is more or less parallel to the local spiral arm suggest the study
of the nature of the equilibrium of the gas-field-gravity system in two
dimensions. Horizontal distance is measured in a nearly azimuthal direction
(x-axis), and the y-axis extends perpendicular to the galactic plane. All
quantities are then assumed independed of z, the distance along a radial
‘direction in the galaxy. Some interesting effects appear when proper
consideration is paid to the third (z) dimension (see Parker 1967a, 1967b;
Shu 1974), but they do not alter the basic conclusions of the two-dimensional

calculations even when new physics, such as differential rotation, is
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introduced.
In this two-dimensional geometry, Parker's stratified equilibrium state
is symmetric about the x-axis because the galactic gravitaticnal field

exhibits such symmetry:
g= -Tv=-8 etn, (1)
where Parker assumed that
gly) = -g(-y) = a positive constant. 32)

One, then, considers only the upper half plane. The magnetic field, B,
is assumed to point in the +x-direction everywhere. [The essence of the
conclusions (see below) does not change when one considers the case in
which g is a linear function of y (Parker 1966).] Parker also assumed
that the ratio, a, of the magnetic pressure to the gas pressure, P, is

fixed in the initial state, that is,
o = 52/81 P = a constant. (33

In fact, Parker (1969a) argued on observational grounds that a is very
nearly equal to unity. We shall return to this point below.

The equation of state is taken as
P=oc? (34)
where C is the isothermal speed of sound in the gas. The force equation

is nontrivial only in the y-direction, and it is written as
N .d_P- - -
(L +a) dy Pg. (35)

Its solution (for y > 0) is

B2 . [-A)
8ra

2
na H2

= 0(0) C? exp(-y/H), (36)

P(y)

where p{0) is the value of the gas density at y = 0, and the scale height H
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is defined by
H = (1+a) C/g. (37)

Parker (1966) introduces perturbatiohs with wavelength} Ax and Ay
in the x- and y-directions, respectively, and requires that the field
line originally coinciding with the x-axis remain undeformed, as well
as that the perturbations be bounded at infinity. A representative

perturbation is written as
SA = ¥ A(y) sin(znylly) cos (2 nx/lx). (38)

The quantity ) is & positive constant much less than unity. He solves
the linearized MHD equations and finds that the stratified (“initial")
state is unstable, provided only that Ax and Ay simultaneously cxceed
some critical values, Ax and 0y’ respectively (see eqs. [31] and [32]
of Paper I). The existence of a lower limit on Ax for instability to
develop is understood on simple physical grounds. If A is very large,
the curvature of the field lines is small, and 50 is the tension. The
vertical galactic gravitational field acquires a component along a de-
formed field line that induces gas motions, tending to drain matter from
the raised portion of the field line. As gas gets "unloaded" from the
inflated portion, the magnetic-pressure gradient remains unopposed there
(where the tension is small) and, therefore, it causes an additional
rise of the already inflated part. Hence, the situation is unstable.
The physical origin of a critical wavelength in the y-direction is
more obscure and, as far as we know, this point has not been discussed
elsewhere. Parker's dispersion relation shows that if Ay < Ay' the
initial stratified state is stable even if A, > AL To understand why

this is so, we proceed as follows. First, we note that if ly < = there
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is always a set of field lines that are left undeformed by the perturba-
tion (38). They are located at y = n Aylz, n=1,2,3, ... Above and
below each of these special field lines, the rest of the f}eld lines, that
is, the deformed ones, curve in an opposite sense (see Fig. 1). As the
instability progresses, this '"symmetry" implies that the undeformed field
lines will retain their special status. (Rigorously, 5vy has the same
y-dependence as the perturbation SA; hence, it vanishes at the position
of the special field lines.) Consider, then, the first undeformed field
line, at y = xy/z. It acts as a natural "1id" to the system below it
which, in fact, contains most of the mass and energy of the entire system.
Now, we recall that the instability is driven by (i) the galactic gravita-
tional field that causes the gas to slide down the deformed field lines;
and by (ii) the magnetic-pressure gradients at the position of the "un-
loaded"” portions of the field.lines. The instability is opposed by (i)
the increase in the field strength due to the compression that takes place
at the position of the "valleys'" of the field lines; and by (ii) the tension
of the curved field lines. The gas-pressure gradients are neglected for
the purpose of this lrgunent.3 If the first undeformed field line is too
low, that is, if xy is too small, the instability cannot develop because
the volume available for the field lines to expand is restricted. As a
matter of fact, if field lines do inflate in the usual manner, they will
“'pile up" close to the first undeformed field line in the region where
inflation occurs. Consequently, the magnetic field will increase there,

tending to suppress rather than to aid the instability.

3. See Paper I § IV and § VIb for s more complete discussion of the

energetics in the case of an isothermal transition. Pressure forces are

important in determining final equilibrium states; after all, they are the

:nly forces available to oppose the galactic gravitational field along
ield lines.
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If A_ is large enough, the cffects just described will remain the
same qualitatively. But, because the "pile-up" of field lincs occurs at
a much higher altitude than before, the magnetic field was much weaker
there in the first place. Therefore, the increase in the field due to
the "pile-up" is not sufficient to suppress the expansionist tendencies
of the magnetic-pressure gradients below, which remain virtually unopposed
because of gas drainage from the inflated portions of field lines. On
the basis of energy considerations, the increase in the magnetic cnergy
due to the compression at the "11d'" is considerably smaller than the
decrease in magnetic energy resulting from the inflation of field lines,
which originate from much lower altitudes. Incidentally, these considera-
tions provide a physical explanation for the fact that, for a given (unstable)
Ax the growth-rate of the instability is maximum if Ay = », (learly, if
the first undeformed field line occurs at infinity (where B = 0), the
magnetic field by itself does not initially act in the region of expansion
SO as to prevent the instability, which proceeds at a rate faster than
it would if in this part of the system the field were acting so as to
suppress it.
2. Retrospect

Altogether, the magnetogravitational instability involves motions tending
to accumulate the gas into clumps at the position of valleys of the field
lines. This led Parker (1966) to suggest that interstellar clouds form
in this manner, and they are suspended by the field at the position of
£he valleys. Whether, in fact, these condensations will resemble the
observed insterstellar clouds can be decided cnly if the final states for
the instability are known. And these can be determined only by solving

the nonlinear MHS equations with appropriate boundary conditions. In
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Paper 1 we found such final states. In the process, we had to tackle
several interesting theoretical questions. (i) How does one include
the assumption that the magnetic field is frozen in the matter in a time-
independent problem, so that a connection between initial and final states
may be made? Our method for doing this has potential and direct applications
in such diversc research areas as pulsar magnetospheres, equilibria of
high-beta plasmas, and steady (but non-uniform) fluid flow in the absence
of magnetic fields if vorticity is conserved in the same sense that
magnetic flux is. It is well known that vorticity (or, circulation) is
conserved for barotropic fluids (Bjerknes' theorem). (ii) What is the
appropriate '"potential energy” of an isothermal (Y = 1) plasma? Without
an expression for the effective potential energy one would not know
whether the calculated equilibrium states are higher or lower in energy
than the initial (unstable) state. Finally, we developed an original
procedure for solving the reduced MHS equations since neicher analytical
nor numerical methods for solving the equations were known.

A question asked frequently is: Why should one seek equilibrium
states for (any model of) the interstellar medium, especially since one
knows in advance that this system is a highly complex dynamical one?
First, for the practically-minded skeptic, we point out that the e-folding
time for the magnetogravitational instability (--107 years) is smaller
than other relevant time scales, such as the passage through two successive
spiral shock waves (~-10a years}. Our equilibrium states, then, are
referred to as "final" in the sense that they can persist for almost 108
years -- before they might be modified by the general decompression that
takes place downstream from a galactic shock (see Paper II). If the in-

stability is triggered regularly (for example, by spiral density shock
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waves), one may hope to observe such configurations in the interstellar
medium of our own, as well as of other, spiral galaxies. On the other
hand, if the instability is active today, one might observe gas motions
consistent ith the final states. There are more general theoretical
reasons for which a knowledge of equilibrium states of any system is very
useful, but these are best decalt with in the context of self-gravitating
interstellar clouds (see § VIIT}),

We now ummarize the main features and predictions of our equilibrium
solutions, after we settle an important question bearing on the very

existence o- final equilibrium states.

B. Final States for the Magnctogravitational Instability

1. Do Final States Really Exist?

We gould offer our calculated final states as a proof of the
existence of such states for the idealized system under consideration.
We would nevertheless prefer to understand their existence on the basis
of first principles. After all, it has been argued in the literature on
intuitive grounds that such states should not exist! What prevents the
field lines from expanding indefinitely while the gas slides down into
every thinncr clumps cf matter at the position of the valleys? In answering
this questi. 1 we distinguish two cases.

a. xy < o, A finite vertical wavelength of the initial perturbation
implies that a set of field lines is left undeformed. In particular, the
first undeformed field line acts as.a natural "1id" on the part of the
system below. The ' 1id" by itself would prevent the unlimited expansion
of the field lines. For this reasoning to be correct it must be verified
that-the y-component of the velocity always (not just initially) vanishes

at the undeformed field lines. This calculation has not been attempted.
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But it seems reasonable that, once the field lines have deformed in an
opposite sense above and below each undeformed field line, it would take
a finite amount of energy to reverse that trend. In the absence of a
continuing source of agitation this may happen only if a flow of energy
occurs from the shorter to the longer vertical wavelenzths of the spectrum
of the initial perturbatioan. Eventually, then, that state will prevail
that is characterized by Ay = o, For, if this "mode mixing" ceases at
some Ay < o, we would have illustrated the point that a final state
with a finite Ay is possible., So, we turn to thes second case.

b. AY = o, Will the field lines inflate forever in this case?
We suggest that they will not. The increasing curvature of the field
lines, both at the position of the valleys and at the "wings" (where
inflation occurs) of a conden;ation, will eventually stop the expansion.
To- show this, we consider two initially neighboring ficld lines character-
ized by A and A + 8A., Since the field lines are held down at the position
of the valleys by the weight of the gas, we focus our attuntion at the
peaks of the two field lines (points a and b of fig. 2). Specifically,
we consider them after they have moved further apart because of the
general inflation of the field lines. We denote by h the distance between
points a and b. Since AA is fixed by flux conservation, the mean magnetic

field in the space between a and b varies as

BeB « nl (39)

The expansive tendencies of the magnetic field are due to the pressure

force -3; leat acting in the +y-direction in this region. Since 3/3y ~ h'l.
it follows that

)
¥, 8% ~ |B_ #} « v (40)
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We must now compare the variation of the disruptive force given by
eq. (40) with the variation of the confining force (tension} duc to the
curvature of the field lines. The tension is +Bz(a§/as]/4n, where s
is a unit vector tangent to a field line. We also have that
laé/asl = (radius of cuwature)'1 = Ax'l for highly deformed ficld lines.

Therefore, in the space between a and b we obtain the relation

2
|82(35/9s)] ~ B Ax'l = h72, (a1)

A comparison between eqs. (40) and (41) reveals that the magnetic-pressure
gradients (disruptive) decrease with altitude faster than the tension of

the field lines (confining). Hence, the inflation of field lines will

eventually stop.

The gas, of course, contributes its share in limiting the inflation of
the field lines. This is done both by holding the field lines down with
its weight at the position of the valleys and by resisting unlimited
compression along field lines due to its finite temperature. At equilibrium,
the gas density varies with altitude, y, as exp{-g y(x,A)/C2] along a ficld
line characterized by the value A cf the magnetic potential. Thus, the
field does not turn into an exact vacuum field at any finite altitude.

2. Some Features of the Final States

In Paper I we presented three final states having the same vertical
but different horizontal wavelengths, and we discussed their features in
detail. We had taken @ = 1 in the initial state, a value which Parker
(1969a) finds reasonable on observational grounds. We suggested that
final states represented "large-scale" condensations of the interstellar
gas in valleys of the field lines. The scale, of course, is determined
from Parker's (1966) instability criterion, if the interstellar medium

has ever existed in the stratified state. But Parker had suggested that
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horizontal wavelengths as small as 10 pc and as large as 1000 pc could
grow. The critical wavelength in the horizontal direction is given by
po= —2ER- L e (42)
(2a + 1)

Therefore, “x is expected to be several times larger than thc initial
scale height H, which is about half the scale height of a typical final
state. Since observations reveal a scale height ~ 10° pc today, wavelengths
smaller than a few hundred parsecs will not grow, even when cosmic rays
are included (see § VBS5d below), unless a is unusually large. This is
the origin of our terminology "large-scale condensations",

The following are some of the main characteristics and implications
of our final states.

a. Scale Height

i. Gas.

Compared with that of the corresponding initial state, the scale
height of the gas in & final state increases at the position of the
valleys, where the field is compressed (see isodensity contours of
figs. 2a, 2b and 2c of Paper I). This 15 so because matter accumulates
in the valleys mainly due to motions along field lines rather than due
to a vertical compression. On the other hand, the scale height of the
gas decreases at the wings of the condensations. For wavelengths within
%+ 20% of the wavelength corresponding to the maximum growth rate, the
scale height of the gas at the valleys is 1.5-2.7 times that at the
wings. The observed "high latitude gas" in the Galaxy may be nothing
more than the high altitude matter indicated by the rise in the iso-
density contours of figures 2a, 2b snd 2c of Paper I. This is in

contrast with the traditional interpretation of the high latitude gas as
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matter raised by inflated field lines during the dcvelopment of the mag-
netogravitational instability. A significant amount of matter is not raised
by inflated field lines. Field lines inflate only because (and only as
fast as) gas can drain away from their raised portions. (When all is
settled, at any point in the region where inflation occurred, the density
in a final state is smaller than that in the initial state.) If the magnetic
pressure gradient remained undiminished during the expansion process, it
might be able to lift a significant amount of matter to higher altitudes.
It is the case, however, that expansion takes place at the expcnse of
the forces that initiated it; that is, magnetic energy is released during
the expansion. Matter which was originally at large y's travels down
steeper field lines. It may, therefore, reveal itself as relatively
rapidly falling gas above large-scale condensations in the interstellar
medium. Since the e-folding time of the magnetogravitational instability
is ~ 107 years, the high altitude gas would be depleted by now unless
some mechanisa replenishes it. We shall suggest that the mechanism which
periodically triggers the instability may also be responsible for re-
plenishing the high altitude gas (see 5§ VBSe below). No additional
assumptions are necessary.

ii. Magnetic Field.

Fig. 3 exhibits the variation of the field, Bf(x,y), with y
at x = 0 (valley) and at x = X = A /2 = 15 C¥/g (wing) of the final
state of fig. 2c of Paper I (hereafter referred to as state c). On the
same graph we plotted the field of the initial state, Bi(y), for comparison.
All values are normalized to Bi(y = 0). It is evident that although the
field at the valley, Bf(o.y), starts out larger than the field at the

wings, !f(x,y), it decreases more rapidly. For y 23 CZ/g, it becomes
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smaller than Bi(y). Also, fory 2 S Cz/g, it is smaller than Bf(X,y).
The scale height of the field at the valley has decreased to about 2.9,
and at the wings to about 3.5 compared o that of the stratified initial
state, in which it was equal to 4.0 (units of Czlg). Thus, the individual
scale heights of the gas and field change in the same direction at the
wings of a condensation and in opposite directions at the valleys, where
matter accumulates. Since observations of synchrotron radiation indicate
a scale height of the field larger than that of the gas, our solutions
suggest that the radiation may be produced mainly at the wings of the
condensations. We shall return to this point when we consider cosmic
rays (§ VBSd).

The above dependence of Bf(o,y) and Bf(x.y) on y is a direct
consequence of flux conservation. The total magnetic flux between the
x-axis and y = Y = xy/z <= is fixed. Therefore, the areas under the
cuws%mq)md%ﬂqLOsst.mnbemuL ﬁme%mm)
exceeds Bf(x,yJ for small y, it must decrecse below Bf(x,y) beyond some
finite value of y.

b. Gas density.

The reflection symmetry about the galactic plane implies that the field
lins originally coinciding with the x-axis will always do so during the
development of the instability. We recall that g has only a vertical
component and that magnetic forces do not act along field lines. Con-
<equently, the gas density will be uniform along the x-axis, even though
its value will be different, in general, in the initial and final states.
will pf(x.y-o) be much larger than pi(O)?

It has been a tacitassumption in all work on the magnetogravitational
instability that the final central (that is, x = 0, y = 0) density of a

condensation will be much larger than 91(0). Even star formation resulting
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from a very large increase in gas density. at the valleys has been
contcmplated. Yet, our solutions show that the final density on the x-axis
is smaller than, and within a few percent of, its value in the stratified
initial state. This is so because if the density increases at the valleys,
where vertical compression takes place, the resulting increasc in pressure
is unopposed along the x-axis. Therefore, matter has to move out of the
compression region {(along the x-axis) to relieve the pressure gradients.
The fractional increase of the cross-section of a flux tube at y ~ 0

is larger at the wings than the fractional decrease taking place at the
valleys. Therefore, the mean gas density in the tube will drop. But
since the density must be uniform on the x-axis, it will always be equal
to the mean density there. Thus, the density on the' x-axis in a final
state will be smaller than that in the corresponding initial state. This
decrease in density is very small because the deformation suffered by a
field line neighboring ‘he x-axis is small. This effect is seen clearly
in fig. 4, which shows of(x-O,y) and pf(x=x,y) for state ¢, and pi(y).

The dependence of the density on y at any x is indicated by the
isodensity contours of figs. 2a, 2b, and 2c¢ of Paper I.

A directly observable quantity in those external galaxies which are
seen nearly face-on is the column density cf the gas if the gas is
predominantly neutral, or the "emission measure” if the gas is mainly
ionized. Our solutions predict a contrast between the maximum and minimum
values of these quantities in the range 1.4 : 1 to 3.0 : 1 for wave-
lengths within £20% of the one corresponding to th: maximum growth rate
(see fig. 3, Paper I). (In the case of ionized gas, a fixed degree of
ionization is assumed throughout the system.) The curves for the emission

measure may represent those for the column density within at most 18%
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because qgvarics nearly ¢xponentially with y at a fixed x, at least for the
first few scale heights, where most mass is found, Thus, the integrals
NH(X) = J dy pe(x,y) and E (x) =S dy p;(x.y), normalized to those of the
initial state, will (almost) differ by a multiplicative constant =~ 1.

c. The ratio (a) of the magnetic pressure to the gas pressure.

We assumed that a = 1 everywhere in the initial state and we determined
final equilibrium states some of which were discussed in Paper I. Parker
(1969a) interprets the observations as suggesting a value of a close to
unity. One uses the observed values of H, C, and g in eq. (37) in order
to obtain a.4 This is misleading conceptually. The e-folding time of
the magnetogravitational instability is about 107 years. Therefore,
observations carried out today will reveal values for H characteristic
of some final state rather than of the assumed initial state. We have
seen that the scale height of.the gas varies typically by a factor of 2
in going from the midplane (x = 0, y > 0) to the wings of a condensation.

In a final state (for example, state c) a varies considerably with
position even though it was taken equal to unity everywhere in the initial
state. At x = 0, it decreases rapidly with y from its maximum value of 2
(see fig. S), while at x = X, the opposite is true. Such a quantity as
an "average' a is meaningless. Since observations may give only a mean
value of the field and of the gas density along a line of sight, the most

one may extract from observations is the quantity

a = <B>¥s v <pP>. (43)

4., 1f g is taken as a linear function of y (as is actually the case for

the first one or two scale heights in our galaxy), the mean value of g

over the first scale height must be used. If cosmic rays are included,

eq. (37) is replaced by equation (50), with the quantity B given by

eq. (48). The point of our argument does not change by these considerations.
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Faraday rotation mcasurements give <:B,|> weighted by the number density
of thermal electrons along the line of sight. Observations of synchrotron
radiation may give-:Bi'8> weighted by the number density of relativistic
electrons. To obtain B itself, some assumption concerning the structurce of
the cmitting region is necessary, ([Note that a is not the same as the
“average" o defined by {a > = viigav a(x,y), where dV is a volume
element.] The quantity a (not o itself) is near unity, indicating a
large-scale "equipartition" between the energies in magnetic fields and
in random motions of gas. Biermann and SchllUter (1951} advocated such
large-scale equipartition on theoretical grounds (see also Parker 1969a,
1969b) .

It should be unnecessary to remark that eq. (43) does not imply the
relation Bz = P; unfortunately, this relation is often used and justified
"'on observational grounds." Neither observations nor our calculations
(see fig. 5) imply that a itself is constant in the interstellar medium
today.

3. Dependence on the Assumed Initial State

We have used as an initial state the stra:ified state suggested by
Parker (1966) in order to keep contact with previous work on the subject.
We do not suggest that the interstellar medium must have existed in such
a state. As emphasized in Paper I, our final states depend on the initial
state only in that they have the same mass-to-flux ratio in their various
flux tubes. If this ratio may be obtained from observations, our formalism
and method of solution of the MHS equations can be used to determine
equilibrium states of the gas and field in the galactic gravitational
field without reference to any particular initial state and without

reference to the magnetogravitational instabiliry.
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4. Comparison with Observations

In Paper I we compared the calculated final states with observations
in the solar neighborhood. We argued that the topology of the magnetic
field, the distribution of the interstellar gas, and the observed gas
motions can be understood in terms of, and can be taken as evidence for,
the magnetogravitational instability. The sun is located at an estimated
distance roughly equal to Axls from the "center" of the. large-scale
condensation obscrved at & = 40°. A second large-scale condensation is
located st L » 250° at a distance ~ 2 A,/3 from the sun, The horizontal
separation between the "centers" of these two condensations is Ax = 1/2 kpc.

The observed gas motions indicate that matter is still sliding down
the deformed field lines. Note that if the sun's ldcation were equi-
distant from the two condensations, zerc velocities would be predicted
at a latitude b ~ 90° because a line of sight at b ~ 90° would intersect
all field lines at right angles. With the sun's position as described
above, however, the maximum velocities are expected to be observed at
b ~ 90° because for these latitudes the line of sight forms the smallest
attainable angle with highly deformed field lines. At intermediate and
low latitudes, gas sliding toward a valley of the field lines from both
sides will reveal itself in both positive and negative velocity (with
respect to the velocity of the center of the condensation arising due to
the rotation of the Galaxy as a whole). Because field lines close to
the Galactic plane do not deform very luch; low latitude local gas is
expected to exhibit smaller velocities than the high latitude gas,
which is falling freely through large distances.

Clesrer evidence for the magnetogravitational instability is expected

in spiral galaxies seen nearly face-on if spiral density shock waves
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trigger the instability. Rots (1974) observed the column density of
hydrogen along the spiral arms of M81 with a resolution of 400 x 800
pc. As his figure 12 shows, the spiral arms are broken up into many
clumps of matter at fairly regular intervals of about 1 kpc; this is
in accordance with our expectations based on the development of the
magnetogravitational instability in an interstellar medium in which
a ~ 1 (see Paper II). Typically, the observed ratio of the maximum to
the minimum column densities is somewhat less than 2, as predicted by
fig. 3 of Paper I. Since the observations were performed along a theo-
retical spiral, rather than through the actual maxima of hydrogen
emission, the full contrast in column densities between maxima and
minima is not revealed in all cases. (Also, not all condensaticns are
well resolved.) A repetition of the experiment with this particular point
in mind and with a better resolution would be very useful.

To model a particular condensation one must know how its mass is
distributed among its flux tubes. Until high resolution observations
of the gas and field may yield information on that matter, any comparison
with observations will, of necessity, be of a semi-quantitative nature.
Our calculated final states predict that the interstellar medium, at least
along spiral arms, would exhibit the following characteristics:

i) The gas will be broken up into clumps of matter at fairly
regular intervals larger than a few hundred parsecs. For a~1, the most
likely separation is in the range 500 pc - 1000 pc, the lower limit being
allowed by the fact that the observed scale height may be twice that of
the initial state.

ii) The contrast in column densities between maxima and

minima will be roughly in the ratio 2 : 1. A similar contrast is cxpected
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between maxima and minima of the emission measure if the gas is pre-
dominanrtly ionized.
iii) There will be an intimate association between the inter-

stellar gas and field, Yet, the scale height of the gas is maximum
where that of the field is minimum (that is, at the valleys) and vice versa.

Purther consequences of the development of the magnetogravitational
instability along spiral arms are discussed in Paper II. In particular,
we suggest that cloud complexes, giant H Il regions, and gravitationally
unbound OB stellar associations may have their origin in the triggering
of this instability by spiral density shock waves.
S. Refinements

Although we formulated (and described a method for solving) a very
general problem in Paper I, tye particular solutions presented may be
restricted by some simplifying assumptions made, First, the gravitational
field of the galaxy was assumed independent of y, the altitude above the
galactic plane. Second, the magnetic pressure was taken equal to the
gas pressure (that is, a = 1) in the initial state. Third, the gas
temperature in a final state was assumed to be the same as that of the
corresponding initial state. Fourth, the initial state was taken as the
(unstable) equilibrium state proposed by Parker (1966). Fifth, the effect
of cosmic rays on the final equilibrium states was neglected. How would
our final states be modified if each of these assumptions is relaxed?
We argue that changes will be of a quantitative, rather than a qualitative,
nature - contrary to Parker's (1968b) suggestion that cosmic rays pre-
clude final equilibrium states.

a. A gravitational field varying with altitude.

The vertical component of the Galactic gravitational field, g(y),
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deduced from obscrvations of _hc motion of K giant stars, is plotted
against y in fig. 6, taken from OQort (1965). For altitudes smaller than
two scale heights, g(y) incrcases almost linearly from 0 to 5 x 10-9
cn/secz. For the next 10 - 15 scale heights, g(y) increases only by an
additional factor of 2. It must decrease as y'2 eventually. So, our
solutions might be expected to change at least close to the Galactic

plane and at very large altitudes because g(y) cannot be approximated

by a constant there. In the region where g increases with y, one might
expect the new final states to have field lines somewhat more deformed
compared to those of the constant g case. This is so because a gas element
is heavier the higher it is along a deformed field line, sc that drainage
of gas into valleys is likely to be more efficient. On the other hand,

the almost vanishing g close to the Galactic plane will give rise to

sma]l gravitational forces that can be balanced by small pressure gradients
along the slightly deformed field lines. Thus, gas drainage into valleys
might be less efficient at small altitudes than it was in the constant

g case.

The inverse-square.dependence of g on y at very high altitudes
indicates that the deformation of field lines in this region may be much
less than before.

On the basis of these intuitive arguments one might speculate on the
expected dependence of the magnetic field and the gas density on position;
but one's intuition cannot substitute for quantitative calcuiations. We
shall, therefore, refrain from further speculations. If and when
observations allow the determination of the mass-to-flux ratio in the
flux tubes of the system, solution of eqs. (10)and (12) of Paper I with

a wmore realistic g will be necessary (and straightforward). Then a
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detailed, quantitative comparison with observations would be possible.

b. Alpha larger than unity.

In Paper I and in § VB2 above, we pointed to observational evidence
suggesting that the critical horizontal wavelength for the magnetc-
gravitational instability is a few (3 or 4) hundred parsecs. The
horizontal wavelength corresponding to the maximum growth ratec is about
twice as large. Since the horizontal “width" of a condensation is in
the range Ax/4 - A‘/z (seo Paper I, § VIa), it is clear that the magneto-
gravitational instability accounts most naturally only for condensations
larger than 102 pc. Thus, we have two proposed mechanisms for cloud
formation: (i) the thermal instability, which can account for dwarf
clouds of dimension < 10"} pc; and (ii) the magnetogravitational
instability that can produce giant condensations of dimension > 102 pec.
What, then, is responsible for clouds of intermediate [or, 'standard”
(see Spitzer 1968;)] size?

Equation (42) shows that, if a >> 1, the critical horizontal wave-
length (Ax) for the magnetogravitational instability becomes comparable
to, or smaller than, the combined scale height (H) of the gas and field

in the initial state. It might be tempting to suggest that this is the

manner in which "standard” clouds form, namely, that the magnetogravitational
instability develops in a cold gas for which a >» 1. There are some
difficulties with this picture. First, Faraday rotation observations

yield a large-scale magnetic field pf a few microgauss. So, one does

not have the freedom of achieving iarge a's by assuming a much stronger
field. An additional restriction on o and thke gas temperature (T) is
imposed by the requirement that H remain reasonably close to the scale

heigﬁt observed today. For H to remain nearly fixed while a and T vary,
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one must have the approximate proportionality (see eq. [37])
a « ¢? « 7L, (a4)

Since the magnetic field must also remain nearly fixed, we have the

additional relation
a « P (4s)
Combining relations (44) and (45), we obtain
P «T. (46)

Equation (46) states that, in order for alpha to increase appreciably,
the interstellar gas must cool nearly isochorically. In § IIA2, we
discussed the possibility that standard clouds might form through the
development of a thermal instability in an interstellar medium cooling
isochorically. We concluded that much smaller condensations are favored
for times less than ~107 years. We now ask: if indeed large o's are
achieved because of isochoric cooling, woul¢ the magnetogravitational
instability account for standard clouds?

We may obtain a hint on the nature of the answer to this question
if we compare the tension of the field lines with the gBalactic gravitational
force exerted on the gas. Since wavelengths smaller than H are now
favored (see eq. [42]) we may write for the radius of curvature of a
typical field line R ~ Ax = KH, where ¢ is a positive constant smaller than

unity. Then the ratio of the tension of the field lines to the gravitational

force 1is
2.0 2 2 2
1% (3s/32) | ~ B A - B & ~ 2 , 47
4xpg 4xR og 4 w<H Pg K

where we made use of the equation i m a Czlg for ¢ >> 1. Equation (47
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suggests that, even if the horizontal wavelength is as large as the scale
height (that is, « = 1), the tension of the field lines might prevent
large deformations. Hence, final equilibrium statss are expected to have
field lines only slightly deformed. The deformation would be smaller for
smaller wavelengths. As a consequence, the density contrast between the
valleys and the wings of a condensation is unlikely to be very large,
casting doubt on the original proposition that the case a >> 1 mignt
produce standard interstellar clouds. Yet, this possibility (and
especislly the case a > 1) should not be ditmissed without an exact
equilibrium calculation.

We note in passing that Heiles (1968) found an abnormaily small number
of clouds with masses 24 - 280 HB‘ This "gap" may not be unrelatzd to
the gap in wavelengths that separates the realms of thermal and magneto-
gravitational instabilities.

c. A non-isothermal equation of state.

The result discussed in § VB2b, that the gas density is uniform along
the x-axis, might be a consequence of the assumption that the gas is iso-
thermal. Suppose then that some other equation «f state, such as P = P(p),
is used. The gas pressure must still be uniform along the x-axis because
there are no other forces available to sustain any pressure gradients.

We must, therefore, have that $xp = (dP/dp) pr = 0. Clearly, the
possihility now arises that there may be density variations along the
x-axis. T  necessary and sufficient condition is that dP/dp = 0 for
some (“critical") value of p; that is, a "phase transition” (an increase
in density at a constant pressuré) must take place.

If such "phase transitions" (see also § IIAl) are permitted, two new

effects may appear. The first one is that small elements of dense gas
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may form (by a thermal instability) and be colleccted in the valleys
because they ''see” an external potential well (see Table 2, Paper I),
into which they may fall by sliding along field lines. If small-scale
condensetions form, or pre-exist, ir the interstellar medium in which the
magnetogravitational instability develops, they will be accelerated

along deformed field lines giving rise to ordered motions of interstellar
matter. There exists observational evidence for such mptions (see § IIB).
The second effect that may appear due to a general equation of state is
that forced (or, driven) "phase transitions" may occur as the gas
accumulates in valleys of the field lines. Such transitions may not
suffer from the limitations of the thermal instability. In particular,
the (short) cooling time of the interstellar gas need not determine the
range of most unstable wavelengths, which will be appropriate to the
magnetogravitational rather than the thermal instability. The rate of
forced "phase transitions” will be limited by the speed with which gas
slides down the deformed field lines. This may be comparable to the speed
of sound in the intercloud medium; that is, about 10 km/sec. Several hundred
parsecs of intercloud medium may undergo such transition within a few
times lo7 years. Under these circumstances, p may be much larger than in
the isothermal case at the position of the valleys. How much denser the
condensations may become can be answered only by solving the problem
formulated in Appendix A of Paper I.

Appealing as the above scenario may be, the difficulty still remains
that if a flux tube close to the x-.axis is only slightly deformed, then
only a sasall increase in density (if any) will result. Therefore, for a
“phase transition" to occur close to the galactic plane, the gas density

in the initial state must be close to the critical value. Although this



-57- LBL-3602

cannot be excluded from gbservations, such an assumption would severely
restrict the theoretical appeal of the original, general proposition,
that the magnetogravitational instability might lead to denser condensations
if a non-isothermal equation of state is used,
d. The effect of cosmic rays.
i. Modification of the instability criterion.
In his stability analysis of the stratified initial state

Parker (1966) studied the effect of cosmic rays by assuming that

g = Pcr/P = a constant, (48)
The cosmic rays tend to destabilize the system. On the one hand they
increase the initial growth rate of an unstable perturbation, and on the

other hand they decrease the critical wavelengths for the instability.

The new instability criterion. is

'z ay |*?
Ax > Ax Z 4 Ht T(1s0+B-y) (15048) - av] (49a)
2.-1/2
xy > A;(Ax) = A; (1 -u) ’ (49b)

where u = A; /Ax < 1, and the combined ("total") scale height of the gas,

field, and cosmic rays in the stratified initial state is given by

H = (1+a+8) Czlg. (50)

The quantity v is defined by y = d ¢n P/d tn p. (Note that eqs. [49a]
and [49b] reduce to eqs. [31] and [32] of Paper I if y = 1 and 8 = 0.
Parker [1969a) argued on observational grounds that B is close to unity.)
It is straightforward to understand why the.coSIic-ray gas has
a destabilizing effect. Under small-amplitude d;fornations of the field
lines the volume of a flux tube remains fixed in the special geometry

under consideration (Parker 1966; Ames 1973). From the discussion of
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§ IVA2, it follows that not only is the cosmic-ray pressure constant on
a field line, but it is also a constant of the motion for small-amplitude
disturbances. As field lines deform in order to equalize their pressure
along field lines, some cosmic rays ''squirt out" of the valleys, where
the cross section of flux tubes decreases. Then the already inflatcd
portions of field lines expand further not only because of the magnetic
forces there (see § VAl), but also because of the gradient of the cosmic-
ray pressure normal to the field lines. With the additional driving force
due to cosmic rays the instability proceeds at a faster rate. Also,
because c;smic-ray pressure gradients aid the magnetic pressure forces
against the tension of the field lines, smaller horizontal wavelengths
may become unstable.

ii. Formulation of an equilibrium problem.

In our calculations of final equilibrium states of the gas and
field in a galactic gravitational field, we ignored cosmic rays consistently.
We did so for several reasons. First, the study of the nonlinear inter-
action between magnetic, gravitational and pressure forces is involved
enough without additional complications. Second, uncertainties in the
origin and in the rate of production and *"'destruction" (or, loss) of cosmic
rays render any adopted relation between pcr and LI that is supposed
to remain valid for about lo7 years a matter of faith or personal oias
as much as a matter of "observational evidence." Finally, the cosmic
rays are not necessary for driving the magnetogravitational instability.
The physics of the instability and of the final equilibrium states be-
comes better understood if complications are introduced in some hierarchical

order of importance.

Parker (1965a, 1968b) suggested that the presence of cosmic
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rays precludes the existence of equilibrium states. If such is the

case, the practical importance of our solutions would be reduccd con-
siderably. They would represent only the states toward which the system
may tend after the "bubbles" of cosmic rays and magnetic fields may break
off and leave the galactic disk, as described by Parker.

[Nevertheless, the predictions made on the basis of the equilibrium states
(5 VB2) would still be the only ones available for an interstellar medium
in which the magnetogravitational instability develops.] Clearly, Parker's
arguments warrant a critical evaluation.

The conclusion that cosmic rays may cause an unlimited inflation
of the field lines depends crucially on two assumptions. First, some
field lines protrude from the surface of a conducting galactic disk into
& vacuum region. Second, a copious supply of cosmic rays within the disk

keeps their pressure fixed in all protruding flux tubes at all times. The

first assumption does not apply to the problem at hand: the gas density
decreases exponentially with altitude, and there is no '"surface' with
protruding field lines. As for Parker's second assumption, it is very
difficult to determine with direct arguments whether in a real galaxy the
cosmic-ray pressure is a constant of the motion. It is clear, however,
that the cosmic-ray pressure within a flux tube, which undergoes considerable
expansion in 107 years (the e-folding time for the magnetogravitational
instability), will decrease unless a source supplying cosmic rays
copiously in this flux tube is available. Although such sources might
be available close to the Galactic plane, it is doubtful that they exist
at altitudes larger than a scale height. An examination of figs. 2b and
2c of Paper I shows that these are the altitudes at which the highly

deformed flux tubes lie. These flux tubes are the first whose expansion
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will be limited by the increasing curvature of the field lines, possibly

leading to equilibrium states.

In what follows we shall assume that the total number (rather

than the pressure) of cosmic rays in each flux tube remains fixed (or at

least quasi-steady) over lo7 years or so, and we shall explore the con-

sequences of this assumption. Since protons whose energies exceed z few
Gev contribute most of the cosmic-ray energy, we consider all cosmic rays
as highly relativistic and we relate their pressure, mass density, and

number density by (see eqs. [16] - [18])

2 4/3
Pcr ® Per ccr = b Moy 0 (51)

where b is a positive constant.

We may proceed in a manner identical to that of § VBl to prove

the following equilibrium theorem. If the magnetic field lines are held

down by the gas in two regions scparated by a horizontal distance Ax' then

2 quasi-steady number of cosmic rays in each flux tube will not cause an

condensations. The tension of the field lines eventually exceeds the

cosmic-ray pressure gradients.

Equation (41) shows that the tension force varies as h'z. The
cosmic-ray pressure varies as
+4/3 -4/3 -4/3
Per © ncr/ « VB3 (s2)

so that its gradient normal to the field lines is
~7/3
AR B . (53)

Therefore, the ratio of the (confining) tension of the field lines to the

(expansive) cosmic-ray forces varies as
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1B2aszas)| , yo13 s4)
4n |7$ Pl
revealing that the inflation of field lines will eventually stop (gqed).

A "typical" field line in a final equilibrium state is expected
to deform in such a manner that its radius of curvature, R, is comparable
to the horizontal wavelength of the mangetogravitational instability cor-
responding to the maximum growth rate, that is, R ~ Ax ~ 1 kpc. Only then
will the tension of the field lines stop the inflation. Thus, the above
equilibrium theorem would provide for a fat radio disk of half-thickness
~ 1 kpc in a quasi-steady state.

‘The compression of the field at the valleys of the field lines
might lead one to expect that the synchrotron emission will be larger
there than in the wings of a condensation. We recall, however, that the
maximum field at the valleys is larger than that at the wings by less
than a factor of 2, and that B decreases with y faster at the valleys than
at the wings (for example, see fig. 3). When this is combined with our
suggestion that, at equilibrium, cosmic rays will 'squirt out” of the
valleys in order to equalize their pressure along field lines, it follows
that the expected contrast in synchrotron emission between valleys and
wings will be reduced and, perhaps, even be inverted (in galaxies seen
nearly face-on, of course). Guantitative estimates may be obtained by
solving the equilibrium problem which we now formulate.

We collect the MHS equations describing the system consisting
of a highly conducting, isothermal gas, a large-scale magnetic field,

and a hot and tenuous (pcr + 0, C__ + =) cosmic-ray gas in a (known)

cr
galactic gravitational field (see § IVA):

-9 - $bcr -V +TxB/c = 0 (55)
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§ -?pcr = 0 (56)

Pe »C° (57)
_ 4/3

Per =P Per (58)

$ xB =@nwo)? (59)

B = ¢ x K. (60}

Note that the quantity ? has a contribution from the cosmic rays (see

eqs. [21c], [21d], and [65]). We are faced with a system of six equations
with seven unknowns! Even worse, of the six equations only fivc express
relations among the seven unknowns; eq. (56) merely states that Pcr is

constant on a field line, that is

Pop =P (61)

but it does not specify the value of this constant, which is different on
different field lines. In going from the MHD to the MHS equations we
have lost some equations, which are satisfied identically for static
conditions with no bulk motions. These are eq. (5), expressing conservation
of mass for the thermal gas, and eqs. (9) and (19), which describe the
assumption that the thermal gas and the cosmic ray gas are tied to the
magnetic field. To solve the MHS equations one must relate first P and Per
on the one hand with B (or, A) on the other. Ad hoc assumptions have been
made by other workers at this point (for example, Parker 1968a, 1968b).
We shall proceed in 2 methodical manner, as in § II of Paper I,

We adopt the two-dimensional geometry usad by Parker (1966) -
see § VAl, and Paper I. We define a scalar function of position, q(x,y),

by

q=P exp(wcz). (62)
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and we write eq. (55) in-‘terms of A, q, and Pcr as
3 /e = exp(-w/c?) Fq + . (63)

By taking the inner product of both sides of eq. (63) with.§ and by

using eqs. (24) and (56) we find that
P exp(W/CZJ £ q = constant on a field line = q(A). (64)

I1f we consider the components of both sides of eq. (63) in a direction

normal to the field, it follows that

chr

é— - exp(-wcz) dA * I
(65)

= Ugay * dcple-

Now we may write eq. (59) in terms of A, q, and Pcr by using eqs. (60)

and (65): ' .
) dP__(A)
vV A(xy) = -4n [%‘}éﬂ exp(-v/C%) + ——j—}——] . (66)

The solutions of eq. (66) represent equilibrium states of our
system. To obtain such solutions one needs to know q(A) and Pcr[A). Since
neither of these functions is a constant of the motion in the nonlinear
flow associated with the magnetogravitational instability, it is not
legitimate to calculate (or to specify) q(A) and Pcr(A) in some initial
state and then proceed to determine a final state characterized by the
same q(A) and Pcr(A)' Both functions csn and must be calculated from
first principles given the manner in which field lines are loaded with
thersal and cosmic-ray particles.

A final equilibrium state is accessible to the system evolving
avay from the stratified initial state only if it has the same mass

and the same number of cosmic rays as the initial state in each of its
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flux tubes. If we can formulate mathcmatically these two conscrvation
laws and incorporate them into the MHS equations, it will be possible for
8 solution of eq. (66) to represent a final state that can be reached
from the stratified initial state through continuous deformations of the
field lines under flux-freezing; the missing link will have been provided
and the system of equations (55) - (60) will have been closed.

Ne calculated q(A) in § IIb of Paper I. It is given by
X
2
c¢ dm(A) ay(x,A) [ V(x,A ]
A d - , 67
q()-,—q-}‘/o/x A exp —(-Hc (67)

where X = Axlz. and all other symbols have their usual meaning. The
integration is performed over x along a field line characterized by the
value A of the magnetic potentisl. Since the mass-to-flux ratio, dm/dA,
is a constant of the motion, we were permitted to calculate it in the

initial state (see eq. [16] of Paper I). It is

2 Xp.(0)
dm(A i A
T o [ A, Bi(oa] ' ©8)

where the (“'total') scale height, Ht' is given by eq. (50). Note that

eq. (36), which relates P, B, and A in the initial state, is slightly

modified by the presence of cosmic rays. It becomes

2 2 P_(¥) 4/3
I\ B !! ) = ~A = b
M) Egyac3Tra H% - cr§ = 7 [, 0]

(69)
0(0) % exp(-y/H,).

We may now calculate Pcr(AJ in a similar manner. The total
nusber of cosmic rays, GNcr’ in a length Ax of a flux tube [A, A + A}

is, by definition,
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X y{x,A+3A) .
N =[ ax f dy(x,A) n__[x,y(x,A)]. (70)

-X y(x,A)

Ne consider x and A as the independent variables. Since the integration
over y is performed with x fixed, we may change variables from y to A by
using the relation

dy = dA (3y/3A). (71)

We eliminate n.. in favor of Pcr by using eq. (58) and we perform the

trivial integration over A to find that

Pop(A) ]3/4
&N . (A) -[ ] oA f ax XA (72)

Solving eq. (72) for Pcr and taking the limit 5A + dA we obtain

[ e (M) 4/3
P (A) = b [ dx aA ] . (73)

The quantity chr/dA is easily calculsted from the initial state since it

is a constant of the motion (by assumption). We have

6Ncr - Per 1(Y) Ax 8y
SA 1 O
- 2Xn.. O . A -1
'1 0 2 Ht Bifos

2 Xn__ .(0) -1
- er,i - A
5 3y/4 H) [ 7H, ni(o)]

2Xn_ (0 3/2 A -1
- v [rdvm] i)

This, we may write

N ) 2Xn, 1@ 1/2
—d L0 7H, B (0 ’

t

(74)
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where the relations expressed by (69) have been used repeatedly.

Equations (67) and (73) state that the functions q(A) and
Pcr(A)' although constant along a field line, respond to changes in the
shape of field lines fand in the volume of a flux tube). They are pre-
scriptions of how to calculate q and Pcr at equilibrium if the distribution
of mass and cosmic rays in the various flux tubes is known now or was
known at any time in the past.

The thermal gas and the cosmic-ray gas differ in an important
way. Since the cosmic rays are not subject to the gravitational field
of the galaxy, the gravitational potential does not appear in eq. (73).
Although this expression for P_. is valid only at equilibrium, the same

expresiion may be used in a time-dependent problem if the speed of sound

(C.p) in the cosmic-ray gas is considered as infinite (see di:cussion in

§ IVA2). Then, as A(x,y,t) changes in time because of deformation of the

field lines, the cosmic-ray pressure equalizes '"'instantaneously" along a

field line and its new value is determined only by the (new) “specific' volume

of a flux tube, as shown by eq. (73).
Altogether, to find equilibrium states for our system, eqs. (66),

(67), and (73) must be solved simultaneously under appropriate boundary
conditions, such as those used in Paper I. We shall not solve this
problem here, although the method used for solving the problem in the
asbsence of cosmic rays may be used in this case as well with only a trivial
modification.

We remark that the cosmic rays contribute a current density,
Jopt that acts in a direction opposite that of jgas (at least for a con-

figuration close to the stratified initial state). This is seen as follows.

We
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may write from eq. (69) that

A, 2
= CH PR |
pcr,i (Ai] B pi(O] c [ 3 Ht E;Iﬁ)] . (75)
Also, in the presence of cosmic rays eq. (15) of Paper I is

28 (76)

2 2(
Equations (75) and (76) show that chr i/dA‘ and dqi/dA: have opposite
R b

signs (Ai is negative everywhere); hence, j as and jcr lo so as well (see

|
eq. [65]). This is in conformity with one's intuition that cosmic rays
should tend to expand the field lines and weaken the mnagnetic field.

e. A non-equilibrium initial state

The calculated final equilibrium states have - mass-to-flux ratio
in each of tnei: ..iux tubes characteristic of Pa xer's (1966) stratified
initial state. We alluded in § VYn3 that the magnetogravitational in-
stability may develop in a rather different initial state. In fact, if
spiral density shock waves (Fujimoto 1966; Roberts 1969; Shu et al. 1973;
Woodward 1973) trigger the instability, the initial state is likely to be
a non-equilibrium one even if the interstecllar medium in the region be-
tween spiral arms could be represented by Parker's initial state. The
study of spiral structure and galactic shocks is beyond the scope of this
work (for an excellent qualitative exposition of our present day knowledge
on this subject see Shu [1973]).

For the purposes of this discussion it is sufficient to state that the
existence of a small-amplitude spiral density wave in the stellar disk of
& galaxy mey induce a shock front in the interstellar medium extending
several kiloparsecs along the x-axis ir the geometry which we have been

using. The width of the shock layer along the z-axis is -~-102 pc. The
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contrast in gas density between the postshock and preshock regions is
usually less than 10 (even in the absence of a magnetic field) and is
achieved within ---106 years (for example, sce Shu et al. 1972). Because
the e-folding time for the magnetogravitational instability is ~107
years, if galactic shocks are responsible for triggering the instability
one must consider as an initial state a non-equilibrium state representative
of conditions in the postshock region before vertical readjustment ¢akes
place. Since we have determined final equilibriuﬁ states by solving the
MHS equations in a dimensicnless form with o of the initial state being
the only free parameter in the equatiors (see Appendix C of Paper I),
our results (for which a = 1) will change only insofar as in the pust-
shock region a ..ay become diffmrent from unity. What the value of o
is in the interarm region is not known in reality. It seems reasonable
to assume, however, that a is only a fraction of unity there; otherwise
*he magnetogravitational instability would develop with Ax ~ 1 kpc and
would lead to condensations such as the ones which we have calculated —
and which have not been observed in the interarm region (at least not yet).
The comp®ession in the galactic shock will increase such a weak a by
the same factor ( < 10) as the gas dunsity (see below). So, & is expected
to be somewhat larger than 1 in the postshock region. This will lower
the critical wavelength for the instability (see eq. [49]) — and will
introduce a perturbation in the z-direction with wavelengths well below
the range of the disruptive effects of differential rotation. The in-
stability may be initiated in this manner.
We claimed in § VB2ai that the mechanism which periodically triggers
the magnetogravitational instability also replenishes the high altitude

gas in the Galaxy. A simple calculation illustrates this point. We ignore



-69- LBL-3602

the magnetograviational instability and the effect of cosmic rays and

we take B to be parallel to the x-axis, as before. We consider a plane,
isothermal shock in the (x,y)-plane with z > 0 being the unshccked region.
The gravitational field is that given by eqs. (31) and (32). In the un-

shocked region (state 1) the equilibrium quantities are

P, () = £;(0) exp(-y/H,) (77a)
By (y; ~ By(0) exp( y/2 H)) (77b)
Aj(y) = -2 H, B, (0) exp(-y/2 H)) (77¢)
Hy = (1+a) C/g (77d)
ay = 512/8 LI C2 = a constant. \17¢)

If adjustments in the vertical (y) direction are ignored for the
moment, the (non-equilibrium) quantities behind the shock (state 2) will

be related to those of state 1 by

P = xp, ) (78a)
B(y) = < By (¥) (78b)
A7) =« A[(Y) (78c)
H, = H (784d)
a, =« o . (78¢)

Equation (78b) follows from lep2 = 81/91. which is valid for one-
dimensional compression (for example, sece Spitzer 1968a), and eq. (78a).
To arrive at eq. (78c) one simply uses the definition B = dA/dy for this
geometry. Equation {78d) states that we have not allowed vertical re-
adjustment yet, while eq. (70e) follows from (78a) and (78b) and the

definition of «. The constant ¢ is in the range (1, 10] and is determined
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np class since the n flux is much larger than the =% flux. Further-

more, in the Ap reactions we have found that the cross section for
Ap -~ K N N +pions

is negligibly amall, and we have taken it so in the total cross section
measurement (Sec. III).

We may estimate that the missing channels E°p-=p+ and
=0 p-E:' n1'r+ (with or without additional pions) have cross sections
roughly equal to the first two listed in Table V.2, Then an estimate

of the total inelastic E:”p cross section is

total
=%p inelastic = 254 5 mb
cross section

from 1.5 to 12 GeV/c.
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from which it follows that

oy 93(0]
a-l- = _TTDI o . (83)

We would like to determine Bs(o] in terms of x and quantities
characteristic of state 1 only. First we substitute the definitions of

H) and H3 (eqs. [77d]) and [79d], respectively) in eqs. (80) and (81). The

result is
8 % P(0) +8,2(0)] = & wPy0) ¢ 332(0) (84)
and
(8 » P,0) + B,%0)] 8 7 P,(0) + B,2(0)
" B,(0) = B,(0),
P, (0) Py(0)
(85)
wvhere
P, € ne1,2,3 (86)

We solve eq. (85) for 93(0) and substitute in (84) to obtain, after some

algebra, the quadratic equation for B;(0):

82(0) B,(0) + B;(0) 8 x P (0) - x[8 » P,(0) + B3(0)]B,(0) = 0.

(87)
Reinstituting Gy W find for the roots of (87)
B5(0) 1 1 172
m--}—a—l-t ITI [l#‘-&l!!(l’lll)]
(as8)

1/2
-’T:—l {[lo4n¢1(l+al)] -1}.

where only the positive root was kept because the ratio 53(0)/51(0) must

be positive.
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Using eqs. (81), (82), and (83) we find the following relations

between the quantities of states 1 and 3:

Hy  0,(0)  B,(0) o) 2k a
" 0.0 " "8,000 " “a," (H+dara(l+an¥? 1
1 3 3 3 1 1 -
(89)
s f(x, ul).
We note that
g:; o flxiap) =1, (90)

that is, Hs = Hl' This is as it should be since in the asbsence of a
magnetic field the scale height is determined only by the temperature of
the gas and the gravitational field. On the other hand we have that

lim f(x, °l) =1; (91)
x+]

when there is no compression there is no change.

The limit of very strong fields is of interest. We find that

lm  f(e, ) = 2, (92)
a,be
1
showing that the increase in the scale height that would result, if
vertical relaxation without "buckling" of the field lines took place,
varies only as the square root of the initial increase in gas density.

For & reasonable range of parameters, that is,
3<sx<0 and . 0.250151,

eq. (89) yields that
Hy/H, = 1.28 — 2.5. (93)

This-is the basis of our suggestion that galactic shocks not only may

trigger the magnetogravitational instability, but they may also replenish
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the high altitude interstellar gas. Of course, if this is the manner

in which the instability is initiated, the field lines will deform and
gas will drain into the valleys of the field lines at the same time that
a general vertical expansion may take place. The instability may procecd
at a faster rate because of the external driving force provided by virtue
of the fact that the initial state (state 2} is not an equilibrium one.
The magnetic stresses, that led to the onset of the instability in the
first place, are relieved by the inflation of the field lines with the
result that the mean magnetic field slong the x-axis behind the shock
incresses much less than eq. (78b) would predict. This may have some
bearing on the predictions of the intensity of synchrotron radiation in

spiral arms (see Paper 1I).
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V1. SELF-GRAVITATING INTERSTELLAR CLOUDS

A. Non-Magnctic Clouds: A Summary

The calculations of Bonnor (1956) and Ebert (1955, 1957) om bounded,
isothermal, gaseous spheres led to a criterion for gravitational collapse.
The total Mass (M) of a cloud must exceed a critical value, which is a
function of the cloud temperzture (T) and the external pressure (Po),

namely,
4

M > Mc-l.z -—G—P—)T , (94)

where the isothermal speed of sound in the cloud is
1/2
C=(kT/um) . (95)

The quantity k is the Boltzmann constant, my is the mass of a hydrogen
atom, and u is the mean mass per particle in units of m,- To account

for the cosmic abundance of helium, one takes

g = 1.27 in H I clouds (nHe/"H = 0.1); (96a)

= 2.33 in molecular clouds (nﬂelan =0.1). (96b)
2

[Often we shall not distinguish among molecular, dark and dust clouds,

to which we shall refer collectively as "dense clouds'. Their relatively
high densities and masses and their low temperatures ensure that they

are self-gravitating. Their differences (for example, see Zuckerman and
Palmer, 1974) are not relevant in the present discussion.] For conditions
typical of H I clouds (T ™ $7°K) and of dark clouds (T * 10°K), and for

a "standard" intercloud pressure5 (Po ~ 1800 k), we find that

5. The precise physical parameters of the intercloud medium (see § IIAl)
are more important in the context of the present discussion than they
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Mc ~ 740 MB for H I clouds; (97a)
~ 8.8 Ma for dark clouds. (97b)

Since individual H I clouds with masses larger than 103 Me are rare
(Spitzer 1968a), one might conclude that the upper limit on cloud masses
is set by the Ronnor-Ebert critical mass. Then, clouds observed to have
masses larger than Mc must, of necessity, be collapsing. Observations
relate a different story. Massive H I clouds may not even be self-gravitating
because they are not usually dense enough. In those cases in which
gravitation is important, turbulence and magnetic fields cn.'4 aid in
supporting s cloud, so that wasses larger than M. may not be collapsing
(Mestel 1965; Spitzer 1968b). But even if the Bonnor-Ebert predictions
were in perfect agreement with observations of H I clouds, the conclusious
drawn would be very misleading. The scarcity of atomic-hydrogen clouds
with masses larger than 103 M0 has a plausible explanation unrelated to
gravitational collapse. Massive clouds may become dense enough to shield
their interiors from ultraviolet radiation, thus allowing atomic hydrogen
to be converted to molecular hydrogen on the surfaces of grains (for details

of this process see Solomon and Wickramasinghe 1969; Hollenback and

S.{(contd) were in our discussion of non-gravitating condensations. Direct
observational evidence sets a lower limit on the intercloud temperature
(> 1000°K) on the grounds that the intercloud medium is not seen in
21-cm absorption (for example, see Clark 1965), although Colvin
et al. (1970) and Hughes et al. (1971) find somewhat smaller lower
limits (300 - 800°K). An upper limit (< 4000°K) is set by the
measured widths of 21-cm emission lines (Heiles 1968). However,

Field (1973) used the observations of Radhakrishnan et al. {1971),

which show no line widths less than 8 km/sec, to conclude that the inter-
cloud temperature is » 8000°K. He also noted that observations of
extinction in the solar neighborhood indicate that the density of

dust in the intercloud medium is < 1% of that in clouds. Assuming

that the dust-to-gas ratio is fixed, he arrived at a density for the
“intercloud gas < 0.2 cm ¥. This yields P_ < 1600 k, a value not far
from the "standard' one, which was derived theoretically (for

example, sce Spitzer and Scott 1969; Field ct al. 1969; Hjcllming

et al. 19069).
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Salpecter 1971; Ho]}cnhack, Werner and Salpeter 1971). As a conscquence,
a large fractiun’of the total mass of such clouds may be inaccessible
to 21-cm observations.

Indecd, observational evidence (direct and indirect) has shown that
hydrogen in densc clouds is mainly in molecular form and that n“7 is in
the range lO3 - lO4 cm-3 in most cases (see reviews by Carrulhcr; 1970,

Heiles 1971; Zuckerman and Palmer 1974). Other typical parameters of

dark clouds are M > 100 M., D(diamcter) = 1 pc, 9, (velocity dispersion

Av (full line width at half maximum power/2.3) = 0.4 km/sec and, as
mentioned above, T = 10°K. The discrepancy betwcen observations and the
Bonnor-Ebert predictions is more serious in this case: observed typical
(not maximum) masses are at lcast a factor of 10 larpger than Mc. If indecd
some dark clouds have temperatures as low as 5°K (Heiles 1971), the dis-
crepancy between observed ana predicted masses will be at least as large

as a factor of 40.

The possible presence of turbulence in dense clouds cannot by itself
eliminate the discrepancy. It may increase by at most a factor of 2 the
effectiveness of the thermal energy in balancing the gravitational energy
in the virial theor :m because supersonic turbulence dissipates rapidly in
shocks (for example, see Mestel 1965). In terms of eq. (94), MC may in-
crease by at most a factor of 4. If the measured line widths are attributed
solely to turbulent velocities, the resulting Mach numbers are usually
larger than 2. Even if the scale (L) of a turbulent element were as
large as the radius of a dark cloud, the dissipation time (L/avl would be
less than or equal to the free-fall time (Mestel and Spitzer 1956; Field 1973).
One is left with the disquieting responsibility of specifying how turbu-

lence is regenerated over such a short time scale.
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The problem of finding a suitable means of supporting a dense cloud
against sclf-gravitation is alleviated if onc postulates that such clouds
are not in equilibrium. Bulk radial motions (collapsc or expansion) have
been invoked to explain the large widths of spectral lines in dense clouds
(Shu 1973b; Liszt et al. 1974; Goldreich and Kwan 1974; Scoville and
Solomon 1974)6. Expansion may take place after a cloud collapses and
the newborn stars form H II regions. In general, the pressurc of an H 1T
region excecds that of the surrounding neutral matter, whose density is
comparable to that of the H [I region but whose temperaturc is consider-
ably lower. '[An exccllent review of the dynamics of the expansion of H 11
regions is given by Spitzer (1968a, 1968b).] Since the expansion of
clouds follows star formation in their interiors, expansion is not relevant
to the problem at hand, namely, the determination of critical values for
the physical parameters of a cloud that may lead to formation of stars in
the first place. We shall find below that the Bonnor-Ebert critical mass is
indeed an underestimate because of the presence of magnetic fields. Thus,
some of the dense clouds which are now thought to be collapsing may not
be doing so. But even if all dark clouds are collapsing, the argument that
this would imply an unsavory high rate of conversion of interstellar
matter into stars may be invalid because star formatiun may be an inef-
ficient process (see § VIIF3).

In order to include the magnetic field properly in the pictur., we
must reexamine the assumption of flux-freezing because the length scales
which concern us here are two to three orders of magnitude smaller than

those relevant in the discussion of § V.

6. The subject of providing a theoretical explanation for the obzcrved
line widths is very controversial. We shall discuss it in § VII in
the light of our equilibrium solutions for sclf-gravitating, magnctic

clouds.
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B. Flux-Freczing in Dense Clouds

Although the decay time of the magnetic ficld due to Ohmic losses
in cool, dense clouds (T ~ 10°K, L ~ 1 pc) is longer than 1017 years
(see formula in § IIID, footnote 2), the diffusion of the ionized component
and the field through the neutral matter may be important (Mestel and

Spitzer 1956). The characteristic diffusion time over a scale L is

L S 'l';—L—;—T , (98)
Vi - Vn

where Vi - Vn is the relative velocity between ions and neutrals. In a
quasi-steady state, this is estimated by balancing the magnetic forces,
which drive such motion because they act directly only on the ioni:zed

matter, with the drag provided through collisions with the neutral matter:

2

-+ - -+ 2 -
Py |vi - vnl/ts =]-v1(s /81) + B 3s/4n3s|. (99)

In eq. (99), the magnetic force has been decomposed into a pressure part
and a tension part in the usual manner. The quantity L is the "slowing-
down" time for an ion (usually carbon in H I clouds, and hydrogen in dlense
clouds) in a field of neutrals (predominantly hydrogen). It is given by

(see Spitzer 1968a, p. 92)

L. h 1
Ts B Teoll.
mn _ {100)
* & ™ %n ‘in

where %n is the ion-neutral collision cross-section and V;n {~C) is the
mean random speed of neutrals relative to the ions. Thus, the diffusion

time becomes -
L " ™ Pn %in Vin . (101)

2 s
|- (8%/8m) + 8% 33/ 3s]

T
D
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Spitzer (19G8a, p. 240) calculates i for an infinite cylinder of gas
threaded by a magnetic field paraliel to the < .s of symmetry. He assumes
that the density is uniform and that magnetic forces balance the gravita-

tional forces in the lateral dircction. The result is

G., V. n, .
TD = M x Pt S 1+ 4 an/nH)-z. (102)
2n G my "y
: - ° : - S = ; -14
With T = 50°K (that is, YiH » ] x 10° cm/scc), m lZIﬁl, 9iH =2 x 10
cmz, and accounting for the cosmic abundance of helium, this is
T.™ 5 x 1013 n,/n, years (103)
D i""H *

Since ni/"H Z5 x 1074 in H I clouds, it follows that 2 3 x 1010 years.

Hence, diffusion may be neglected.

The degree of ionization in dark clouds is probably somewhat smaller
than 10'5; if it were larger,.long-range Coulomb collisions between electrons
and Hzco molecules would excite the 6-cm line of HZCO and, thus, would
quench the anomalous cooling of this line -- contrary to many observations
(see, for example, Zuckeruan and Palmer 1974). In typical (T ~ 10°K} dark
clouds, therefore, the diffusion time may become as small as 10e years.
This is still much larger than free-fall times at typical dark-cloud
densities (Tff ~ 106 years). We may, therefore, still assume that the
magnetic field is frozen in the matter.

Nakano and Tademaru (1972) calculated in detail the degree of ioniza-
tion in dense clouds of uniform density. At n 2 103 cm's, for the massive,
spherical cloud which they considered (M = 104 Mg), ions are contributed
by hydrogen due to ionization by cosmic rays and 4OK radioactivity, and
by heavy elements due to ionization by ..-rays with energy greater than

1 kev. They concluded that, in a collapsing cloud, the diffusion time for
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the magnctic ficld becomes comparable to the frec-fall time if ny ozl x 10°

cm's. This is a significant result, but it is valid only as an order-
of-magnitude estimate becausc (i) spherical contraction is an unlikely
possibility-in the presence of a magnetic ficld; (ii) a self-gravitating
(let aside a collapsing) cloud cannot possibly maintain a uniform density;
and (iii) it is not clear a priori that thc tension of the field lines
{which was neglected) will be smaller than the magnetic pressure gradients
in a highly compressed cloud with a frozen-in field connected smoothly to
the field of the surrounding medium. At any rate, the question of how in
the first place a cloud can contract to such a high density in the
presence of a frozen-in field (and, possibly, rotation) is still one of

the outstanding theoretical problems associated with star formation. It

is this pre-collapse stage that interests us here.

C. Magnetic Clouds: Background

1. The Problem of Angular Momentum and "Magnetic Braking"

If an interstellar cloud of typical dimensions rotates as slowly
as to have always the same face turned toward the Galactic center
(period » 2 x 108 years), it is impossible to contract axisymmetrically
to stellar sizes while Conserving its angular momentum. If that happened,
the star that would form would have a period of rotation of about 5 minutes
and the contrifugal forces would exceed the gravitational forces by about
three orders of magnitude (Spitzer 1968a, p. 231).

It is, however, possible for a cloud to contract indefinitely while
conserving its angular momentum if non-axisymmetric configurations are
attained (Weber and Shu are investigating this process using the tensor
virial theorem). To illustrate this point, we consider a cloud which is

initially spherical with density Py radius Rl' and is rotating uniformly
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with angular velocity ﬂl. Its angular momentum is J = %-MR? Ql =
%% f R? a. If it attains a rod-like shape of uniform density Py

radius r and length 2 (r << &), it may rotate about an axis perpendicular
2
to its axis of symmetry with angular velocity n, such that J = %7 Mg a, =

2
%;— [ % 23 nz. The possibility arises that a cloud may contract without

increasing its angular velocity (that is, nl = nz). Then, pz/pl = gg R';'/r2 13
and the density can increase arbitrarily as long as r temains much smaller
than t. However, such a sequence of events can take place only if it
satisfies the additional local constraints imposed by the force equation.
Furthermore, such contraction would involve considerable compression of
the interstellar magnetic field no matter what the relative orientation
of Jand B might be. It is, therefore, an unlikelf possibility if the
field is frozen in the matter, as the case seems to be.

Since the magnetic field is expected to thread both a cloud and the
intercloud medium, the rotation of a cloud twists the field lines and
generates Alfv;n waves, that transport angular momentum. Mestel and
Spitzer (1956) give the characteristic time for this process as roughly

equal to the time it takes an Alfven wave (of speed v,) to travel across

the cloud (of radius Rcz):
T SRV, (104)

More recent observations and calculations indicate a gas density in the
intercloud medium typically two orders of magnitude smaller than that

ir clouds. The tenuous intercloud gas will tend to transport angular
momentum less efficiently than eq. (104) implies, while, if the Alfven
spegd in this medium is larger than in the cloud, it will tend to reduce

Ty Ebert el al. (i960; see Spitzer 1968a, p. 243) consider the simple
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case of the uniform rotation of a spherical cloud (of density Del) about
an axis aligned with 2 uniform magnetic field, which thresals both the cloud
and :he intercloud medium (of density Dic)' which is initially at rest.

The calculated decay time may be expressed as

[} R
1y = -_;f— et gt (105)
ic A

1t must be emphasized that Va is the Alfven speed in the intercloud

medium ( = 15 km/sec at B = 3 upgauss ond n = 0,2 cm's). 1f Rcz = 5 pc

and pal/pic ~ 102, then Ty & 5 ox 107 years, which is larger than the
cloud free-fall time by a factor of 4.2 (for Mg = 20 cm's). We note,
however, that Ty is considerably smaller in the case of dark clouds, which
are usually surrounded by envelops of matter of comparable density. For
an order of magnitude estimate, we scale the magnetic field to dark-cloud
densities ( ~ 2 x 103 cm's) according to the relation B « p‘, where

1/3 < «k s 2/3 (see § VIIF). Then, Va decreases by at most a factor of
4.64 (for « = 1/3, which is the worst case; if x > 1/2, va will increase
in this case and since Rcz ~ 1 pc, we

upon contraction). Since Pag ~ Pic

find that ;2 S x 105 years. It is not surprising that dark clouds do
not exhibit appreciable rotation.

Even in the case of normal H I clouds, Ty oust be smaller than that
given by eq. (105). The region of the intercloud medium which is directly
affected by the rotation of the cloud has a radius T, > Rcl"' eq. (195)
contains the implicit assumption that r, = Ral' This is so because field
lines neighboring the equator of the cloud bend as the cloud rotates and
set the intercloud gas into a rotational motion. Equation (105) should
be multiplied by a factor Razer {< 1), where Ty is the distance from the

axis of rotation at which the intercloud medium has received information
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about the cloud's rotation in a time t; that is, ry v, t. Withina
time as small as 5 x 106 years, the intercloud medium within a radius
of 75 pc from the cloud will be affected. There may exist an vAlfvén
cylinder", the surface of which rotates at a speed equal to Var In such
a case, and if corotation is established within the Alfvén cylinder, we
would have that Rcm/rA =V /vA. where Va2 is the speed of rotation at
the cloud equator. Since observations limit Vo <1 km/sec, Ty may have been
reduced by more than a factor of 15, down to a few times 106 years. This
possibility warrants a more careful investigation in the future.

It must also be emphasized that since observations show that the
magnetic field is predominantly parallel to the Galactic plane, it is
more likely that the axis of rotation of a cloud will be perpendicular
to the field. With the field lines tied to the interrloud medium and
the field frozen in the matter, corotation is unlikely in this case, and
the magnetic braking of the cloud's rotation may be more effective than
in the case in which J was parallel to B. It is possible that the magnetic
field completely prevents the period of rotation of a cloud from falling
below that of the Galactic rotation, so that there is no relative rotaticn
betwzen the cloud and the field. If that is the case, the equator of a
cioud of radius 5 pc would rotate with a speed of only 0.16 km/sec.
Observations do not exclude such motion.

In summarv: in the absence of a magretic field, the angular momentum
problem may be bypasscd by non-axisymmetric contraction. This is an un-
likely evolutionary course in the presence of the interstellar field,
which, however, may reduce the angular momentum of a cloud :ignificantly
in a time comparable to the free-fall time. Since flux-freezing appears

to rest on solid foundations at least in the pre-collapse stage (and
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possibly for some time after collapse sets in), the equilibrium and

stability of magnctic clouds must be studied in greater detail.

2. Non-Equilibrium Calculations

a. Mestel's Spherical Model
Mestel (1966) considered the spherical contraction of an iso-
thermal cloud out of a background medium of uniform density, ai, perme-
ated by a uniform magnetic field Bi‘ He assumed that the density at a

radius r is given by

o) = p; ¢ 0, eml-e/rg)’] . (106)

The quantity T, is a radius beyond which p decreases rapidly to its back-
ground value, and the central density p(0) = Pe iﬁ Pe > Py Equation
(106) is a legitimate assumption because this is not an equilibrium problem.
The density having been specified, the magnetic field, which is assumed

to be frozen in the matter during the spherical contraction, is uniquely

determined. In spherical coordinates (r, €, ¢}, the field is given by

B =+B, cose[E(r)/pi]z,s , (107a)
.. . p () '§ r)|2/3
B, B, sine 5{?5- [g-l-:] , (107b)

where p(r) is the mean density within a sphere of radius r. Mestel shows
that near the center of the cloud (r << ro), one has that p ~ p, so that
the field is nearly uniform and equal to Bi(B/pi)zls. In the intermediate
Tegion 1 << r/r0 << (pc/pi)l/s, the field is almosi radial (Be << BrJ
except at @ ~ n/2, At larger radii, r/r0 >> (pc/pi)lls, p~ p; and the
field becomes uniform and equal to Bi.

The nearly radial field, which is solely the result of the imposed
sph;rical contraction, causes large "pinching" forces at the equator --

so much so that magnetic forces much excced gravitational forces. Mestel
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argucs that, if this configuration is achieved through rapid, violent
contraction of the cloud, flux dissipation, reconnection and detachment
of field lines will take place at the ec ator. He points out, however,
that prefercntial flow of matter along field lines might prevent such
configuration from being reached.

Perhaps the most significant result of this study is the derived
criterion for lateral collapse. If the initial density, radius, and

magnetic field satisfy the inequality

p.T
49 5 0.oye’? -0 146

-1/2
By

(108a)

the gravitational forces exceed the magnetic forces (at & = 7/2) so that
further contraction will ensue. Equation (108a) ma} be written in the

alternative form

M M M -1/2
LIPS . . = 0.152 6"1/2, (108b)
s (’B)crit. (Bi "o)cric.

Evidently, eq. (108b) does not specify a critical mass (unlike eq. [94]);

it defines a critical ratio of the total mass and the total flux of the
cloud. It may also be considered as defining a critical ("Mestel)

surface density for a given background field, Bi’ namely,

(M . -1/2
n = (;—r-g>cm 0.152 6™/ 8,. (108c)

With Bi measured in ugauss, this is
= 1.75 x 10‘5.(ni/3 ugauss).

If the background magnetic pressure is equal to the background gas pres-
sure (not an unreasonable assumption for the intercloud medium), that is,
if a, = Bils nPo = 1, we may compare oy with the Bonnor-Ebert critical

surface density (see eq. [113) below). We “ind that
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(my/mpe) = 0.48. (109)

This cannot be the case. One expects the critical surface density to be
larger in the presence of a magnetic field. The sources of crror are:
(i) the collapse of thc Bonnor-Ebert cloud is partly duc go the extcrnal
pressure, which was neglected in the magnetic case; (ii) the internal pres-
sure of the magnetic cloud was also neglected. On the other hand, Mestel's
non-equilibriumconfiguration actually antagonizes the collapsc because of
the greater distortion suffered by the field lines compared to the case
in which preferential flow along the field takes place.

We note that the collapse criterion (eq. [108b}), in addition to being
independent of the cloud temperature (by assumption), is also incomplete
in the sense that it is a condition on the ratio of the total mass to the
total flux of the cloud. It is clear, however, that the manner in which
matter is distributed among the various fiux tubes is crucial. For instance,
we consider anon-magnetic cloud on the verge of collapse according to the
Bonnor-Ebert criterion. We introduce a magnetic field such that a flux ¢y
threads the cloud. If all field lines are confined to a thin shell at the
surface of the cloud (while the interior is field-free), the cloud can still
collapse. If, however, the same flux is distributed over a thin cylinder
through the center of the cloud, collapse will be impossible. A complete
ctiterion for the collapse of a magnetic cloud should depend on the mass-

to-flux ratio in each of the flux tubes threading the cloud as well as on

the cloud temperature and the external pressure.
b. Strittmatter's Spheroidal Model

Strittmatter (1966) studied the contraction of a magnetic cloud
through the scalar and tensor virial theorems (Chandrasekhar and Fermi 1953).
The.tgnsor virial theorem shows that the magnetic field is somewhat more

effective in preventing the collapse of a cloud than the scalar virial
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theorcm would indicate. In the case of a highly flattened cloud, how-
ever, the two theorems give identical results. The critical mass of such
a spheroid is (8/3"2)]/2 (= 0.52) times that of a sphere of the same mass
and flux.

Strittmatter assumed that the shape of the cloud remains spheroidal
during contraction (the cloud is oblate with its axis of symmetry parallel
to the magnetic field) and that the density and the magnetic field remain
uniform inside the cloud. The density outside the cloud is assumed
negligible and the magnetic field uniform at infinity. He required the
continuity of only the normal component of the field across the cloud
surface. (In the case of a dipole field, he showed that requiring conti-
nuity of the tangential component of the field increases the effectiveness
with which the field provides support against gravity; specifically, the
magnetic energy increases by about a factor of 2.) With the internal

and external pressures neglected, no "equilibrium" is possible for a

highly flattened cloud if

_ 1/2
':—- > -:5—) = (__40__ %) = 0.123 ¢7V/2, (110a)
B B/ crit. 27 ot :
or
N -1/2
:g- > mg=01236 s . (110b)

If we measure Bi in ugauss, eq. (110b) becomes

B
mg = 1.42 x 1073 ( i )
3 ugauss

The critical surface density is somewhat smaller than Mestel's (eq. [108c]).

In view of the different methods employed to arrive at the two results,
it is reassuring that they differ by only a factor of 1.26. Yet, it is

disturbing that the non-magnetic Bonnor-Ebert calculatiunc give a more
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stringent criterion for collapse (see eq. {109]). One suspccts that

exact equilibrium calculations will fair better in this respcct.
Strittmatter took great care in applying the virial theorem. How-

ever, because many misapplications are frequently made, a comment is in

order (see also Mestel 1965, and Strittmatter 1966).

c. A Comment on the Virial Theorem

With the inertial term neglected, the virial theorem expresses
a necessary (but not sufficient) integral condition which the various forms
of energy present in the system must satisfy at equilibrium. By virtue
of the fact that the details of the mechanical balance of forces are
washed out, the virial theorem is particularly suited for the study of
systems whose details are either not known or too cbmplicated to study
through the force equation, Almost by definition then, the time-inde-
pendent form of the virial theorem, which is strictly correct only for a
system at equilibrium, is applied to simple non-equilibrium configurations
thought to approximate the real system in an "average' sense. Quali-
tatively erroneous conclusions may be reached unless one proceeds with
care. The calculation of the critical mass for gravitational collapse
of a cloud in the presence of a magnetic field is a classic example where
the virial theorem is misapplied.

Consider a massive, spherical, isothermal cloud of uniform density
threaded by a magnetic field which {5 uniform in all space. Let the
cloud be embedded in a medium of uniform pressure and negligible density.
If the mass of the cloud exceeds some critical value depending on the
cloud temperature and the external pressure, the virial theorem will
suggest that the cloud should collapse. This conclusion is independent

of the magnitude of the magnetic field since the volume and surface
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magnetic terms in the virial theorem cancel each other exactly -- this

is as it shouid be because the magnetic force } x E/c vanishes everywhere
for a uniform field. The field could very well have been of infinite
strength! Clearly, a small contraction of the cloud normal to the field
will bend the field lines and, for a strong field, will induce currents

that will cease further lateral deformation -- contrary to the conclusion

reached on the basis of the (misapplied) virial theorem.

3. Equilibrium Calculations

It is not an easy task to construct equilibrium configurations of
wmagnetic ciouds. Strittmatter (1966, p. 360) described the difficulties
very eloquently:

", ..The absence of spherical symmetry renders the determination

of the gravitational potential a matter of considerable complexity,

unless the mass distribution is of a special form (e.g. a uniform

spheroid or a set of spherical shells of constant density). A

further complication is introduced by the requirement that the

sagnetic field link smoothly with an external force-free field.

Equilibrium models are thus difficult to construct, homologously

contracting models about equally so; nonhomologous contraction

is almost impossible to study in detail except in special non-

magnetic cases..."”

These are the difficulties in solving the problem. In actuality, the
greatest difficulty arises in formulating a well-posed, self-consistent
problem including flux-freezing. Once a problea is posed, tc obtain a
solution by analytical, quasi-analytical, or numerical techniques (the
search degenerating in that order) is usually only a matter of time.

Before we pose and solve the complete problem, we summarize the few
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existing equilibrium calculations.
a. A Thin Disk with a Magnetic Field Parallel to its Axis

The equilibrium in a direction parallel to thc axis of symmetry
of an isothermal, gaseous, self-gravitating disk having an infinite radius
and a density independent of radial distance (Spitzer 1942; Ledoux 1951;
Spitzer 1968a) remains unaffected by the introduction of a uniform magnetic
field parallel to the symnetry (z-) axis. Field (1969) considered the
effect of a constant external pressure on the equilibrium in the z-
direction. He found that, as the surface density (ms) increases while
the external pressure (Po) remains fixed, the thickness of the disl (Az)
first increases, reaches a maximum

2 2
—— (111)

C ¢
Bagy = 1.32 ——S— . 0.53 ,
max @ncp)l/? (c Po)m

and then decreases. The surface density at maximum chickness is

CPy\1/2 P\ 1/2
m = 3.04 = 1.22( 2 . (112)
§,max 2%G G

This "maximum" surface density that can still be in equilibrium at an

external .pressure Po is somewhat smaller than the corresponding 8onnor-

Ebert value, which is

M P \1/2 P \1/2
C S/ o) - 1‘59(_9_>

L Rz ) ;\\E— G

P \l/2
1.92 x 10”3 (—"-) u/ca’ .

®BE

(113)

1800 k

The diameter, Dc’ of a Bonnor-Ebert sphere at the verge of collapse is

given by 2

C
D =2R = 0,98 ——— (114)
c c (GPo)l/Z
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The fact that 4z < i, and e max < "MBE reflects the effect of the
gravitational field due to the mass of the disk exterior to a radius

~ Az-ax/2. Although the “critical’ surface densities ms‘..x and Mop

are nearly equal, qualitat.v:ly different effects develop in each case

if these values are cxceeded. In the Bonnor-Ebert case, a sphere with
surface density greater than L collapses, whereas in the one-dimensional
geometry the thickness of the disk should merely decrease. It is well
known that one-dimensional collapse of an isothermal gas is impossible
because the pressure force normal to a thin sheet increases as (Az)'l.
while the gravitational force is independent of az.

Strictly one-dimensional calculatjons parallel to the magnetic field
cannot possibly provide any information on magnetic.phenomena. So, Field
(1969) explored the assumption that a disk of finite radius Ro ~ Az.‘x will
actually collapse if Az = oz - This ied to a critical mass smaller
than the Bonnor-Ebert value, given by eq. (94). That being impossible,

the need to account quantitatively for the role of the magnetic field

in the a2quilibrium of interstellar clouds became imperative.

b. An Infinite Cylinder Aligned with the Magnetic Field.

A cold, gaseuvus, infinite cylinder with a frozen-in field
parallel to its axis may exist in mechanical equilibrium, in which the
magnetic pressure gradients balance the gravitational forces in the radial
direction. We consider an initially uniform density, Pis and s uniform
field, '1' After gravitational forces are "switched on", the equilibrium

density is given by (see Field 1973)

o(r) = p(0) Jy(kr), (115)

where dv; 12
ks 262, (116)
i
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Since the radius of the cylinder is defined by Jo(kR) = 0, it follows

that
R = 2.4/X
8 -1/2
=24 — G . (117)
4xnp .

i
-24 3 .
If we take Bi = 3 ugauss and o; = 2 =10 gm/cm™ (= the mean inter-

stellar density), we find that
R~ 370 pc, (118)

8 vali2 too large to be of practical significance. Although larger values
of °; will yield proportionally lower values of R, it is not legitimate
to procead in that manner because the frozen-in ficld (Bi) must increasc
by the same factor as the density in eq. (117). On the other hand,
smaller radii cannot be achieved by considering a finite cylinder and
sllowing compression along i;s axis followed by lateral comtraction due
to the increased gravitational forces. Field pointed out that a cylinder
of finite length will transform into a disk under the effect of self-
gravitation. What, then, accounts for the apparent elongation of dark
clouds along the field (Shajn 1955)?

Of 31 clouds studied, Verschuur (1970a) finds that the relative angle
between the field and the largest dimension of a cloud is less than 10°
in 16 cases, less than 40® in 21 cases, and larger than 40° only in 10
cases. It must be noted, however, that the field direction, with which
the cloud elongation was compared, is that given by the theoretical model
of Mathewson (1968) which is in conflict with the recent Faraday rotation
observations of Wright (1973) and Manchester (1974) -- see discussion in
§ IIIC.

If a cloud is not self-gravitating, we can understand its possible
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elongation along the field, especially if it is in a region in which

the magnetogravitational instability develops. Under the action of the
galactic gravitational fielu the cloud will be stretched along the magnetic
field lines. Also, if conducting matter is deposited in a particular flux
tube at a pressure higher than that of the ambient medium, it can expand
more easily along the field than across it. If, however, a cloud is known
to be self-gravitating and to be aligned with the magnetic ficld, and if
no rotation about an axis normal to the field and no internal source of
energy (for example, H 11 regions) are observed, rather than abandoning
our faith in Newton's second law, we may have to re-evaluate our ideas

and confidence in the methods used for inferring the direction of the

interstellar magnetic field.

c. An Axisymmetric Model without Flux-Freezing.

D. A. Parker (1973) constructed equilibrium solutions for a
self-gravitating, isothermal cloud (M = 103 He, T = 75°K) surrounded by
a hot snd tenuous H Il region of pressure 2.37 x 1800 k., An axisymmetric
magnetic field permeates both media and is both force-free and curl-free
in the H II region and uniform at infinity. Solutions with B_ = 0.25,
1.0, and 2.0 ugauss are obtaincd. The normal and tangential components
of the field are continuous across the cloud boundary, but the field is
not frozen in the matter. Consequently, although a solution satisfies
the MHIS equations and the boundary couditions (and an ad hoc assumption7
made in order to close the MHS equations), neither the magnetic flux

threading the cloud nor the manner in which it is distributed can be

7. "D. A. Parker's assumption that A = f ~ const. in his eq. [13] can
easily be shown to imply the requirement that the current density at
equilibrium be given by j,/c=-Arp, where p is the gas density; we use
cylindrical coordinates (*, ¢, 2). This is too stringent a condition
on the admissible solutions.
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known before a solution is actually at hand. Even then, knowledge of

the magnetic flux provides little useful information beciause the ticld
can slip through the cloud, or the field linecs may recoanect just to
allow force balance if the cloud is thrown out of cquilibrium. In fact,
in some of D. A, Parker's equilibrium configurations, field lines close
to the equator form closed loops already. Thus, the cffectiveness of the
magnetic field in preventing gravitational! collapse canpot be quantified
from such equilibrium calculations.

The problem was formulated in spherical coordinates (r, 8, ¢) in
terms of the gravitational potential, ¢, and the magnctic stream-function,
¥. [The magnetic field is given by Br = -(r2 sine)'1 /8,

By = (rsine)'l 3¥/3r.] The method of solution was a variation of the
“self-consistent field" iterative method of Ostril<zr and Mark (1968). A
mathematical sphere is chosen so as to surround the cloud. The Poisson
equation for y and the Poisson-like equation for ¥ are solved within the
sphere once an initial guess of the density and the cloud boundary is

made. The force cquation (actually, the Bernoulli constant) is then used
to obtain a new density, thus permitting continuation of the iteration
process. Solutions of the homogeneous equations outside the sphere are
matched to the interior solutions so that the magnetic fi2ld is continuous
across the boundary. Since the potentials are valid only within the sphere
circumscribing the original cloud configuration, significant errors are
introduced if the cloud becomes very fiattened. Another source of in-
accuracy is the choice of spherical coordinates, which are not particuiarly
suited for flattened objects. Nevertheless, the results do exhibit some of
the qualitative features which are expected of magnetic clouds.

‘The cloud flattens along the magnetic field, the more so the stronger
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the background ficld (B_) is. The isodensity contours behave likewise.
The choice of the initial parameters, however, is such that the muagnetic
pressure is negligible or small comparcd to the gas pressure in the sur-
rounding medium. (In our notation, a, * Bilswl’m = 0.004, 0.064, 0.256
in Parker’s three cases.) Thercfore, it is not surprising that in the
computcd cquilibrium states the magnetic ficld at the center of the cloud
is amplified by as much as a factor of 8.48 in one case without the
magnetic forces becoming dominant. As it can be deduced from the maximum
ratio of central to surface densities (= 4.34) achieved in any one of
Parker's solutions, the external pre:ssure is playing a significant (but
not dominating) role compared to self-gravitation -- see discussion in
§ VII below. On the cther hand, the internal pressure forces are comparable
to gravitational forces but larger than the magnetic force in the weak
ficld (8, = 0.25 ugauss) cas;; pressure forces become more impertant in
the case B, = 2 ugauss because of flattening.

Parker found it necessary to exclude solutiuns with positive values
of the arbitrary parameter A (see his eq. [13]) because thes central magnetic
field pointed in an opposite direction from that of 3. = ézB-. In view ot
our remark above, that j./c = - Arp (see footnote 7), we can understand
this pheromenon. It is clear that once 3_ has been chosen to point along
the +z-axis, j¢ must be positive (that is, 3 must poiat in the +¢-direction);
if j’ is negative, Ampere’s law implies that the field must be in the -z-
direction at least on the axis of symmetry. Therefore, to preserve the
direction of 3, the parameter ) must be negative.

D. A. Parker also considered uniform rotation (with angular velocity
1) of the cloud about its axis of symmetry, which is aligned with the

magnetic field. This is permissible because the density of the surrounding
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H II region was assumcd negligible. Although corotation of the field at
infinity is not expccted in practice, the results are instructive. As
one could anticipate, rotation simply dilutes the gravitational potential
only in the lateral direction by an amount r2 92/2, giving rise to flatter
clouds and to field lines which are less distorted than in the case with-
out rotation.

We do not think that Parker's results support his conclusion that
"the magnetic field exerts strong pinching forces in a narrow equatorial
region" (D. A. Parker 1973, p. 64). His Tables V, VI, and VIII show that,
at the equator, the magnetic force is always smaller than the pressure
force. The field lines formed neutral O-rings at the equator in some
cases merely because flux-freezing, which would imply that the stream-
function ¥(r, z) is a single-valued function of r at a fixed z, was not

imposed.
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VII. NONIIOMOLOGOUS CONTRACTION AND EQUILIBRIA OF
SELF-GRAVITATING INTERSTELLAR CLOUDS EMBEDDED IN
AN INTERCLOUD MEDIUM: FLUX-FREEZING

A. Formulation of the Problem

1. The Equilibrium Equations

The equilibrium of a self-gravitating, conducting, isothermal,
gaseous cloud surrounded by an intercloud medium of qualitatively similar

properties is described by the MHS equations:

-ﬁpk-pkvw+}kx§/c=o. k=1, 2; (119)
2
Tx8 = (41/0) kZl ?k (120)
P, = 0y ci , k=1, 2; (121)
) 2
VY = 4G ;1 oy - (122)

All quantities have their usual meaning. The subscripts 1 and 2 refer

to the cloud and intercloud media, respectively. Unlike we did in § V,

in this section we ccusider the gravitational forces due to the gas only

{(p, = 0 in eq. [10]). Cloud and intercloud matter does not coexist in the

same region of space (formally, f1 n f2,= 0, where f is the magnitude of

any one of the subscripted quantities in eqs. [119] - [122]). The two

media interact through their gravitational and magnetic fields as shown

in the above equations and, in general, through pressure forces on their

common boundary (see below). We note that eqs. (119)-(122} constitute a

system of six equations %i:l cight unknowns. Flux-freezing and conservatior

of mass that would close the systeﬁ have not been imposed yet. We shall

incorporate these conservation laws in our equations properly in § VIIA2.
It is convenient to introduce the magnetic vector potential, defined

by eq. 713), that is,
I ERER S (123)
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because Maxwecll's equation
.8 = 0 (124)

is then satisfied identically.

We consider a three-dimensional geometry with axial symmetry about
the z-axis, The z-axis may be thought of as running locally along a
spiral arm and lying in the Galactic plane, although this is not essential.
We use cylindrical coordinates (r, ¢, z) throughout this section. (To
avoid confusion, we denote the position vector in spherical coordinates
by x and its magnitude by |X|, which is distinguishable from the Cartesian
coordinate x.) We choose the origin of coordinates at the center of the
cloud so that there is reflection symmetry about the plane z = 0, Then
we may consider only the right-half plane z 2 0.

With B being a poloidal ‘and R a toroidal vector, the scalar function
¢(r, z), defined by

¢(r, z) =r A¢(r, z) = v A(r, 2), (12%)

is both constant on a magnetic surface as well as a constant of the motion
(see § IVB2, eqs. [29] and [30]). We may, therefore, use & to label the
magnetic surfaces once and for all. The intersection of a magnetic surface
with the (r, 2)-plane is referred to as a field line. Note that the

magnetic field may be written in terms of ¢ as
- A
Et-rle’x'ﬁ, (126)

and that the magnetic flux (OB) through a contour of radius r is given

by (see § 1VB2)

OB =22 o, (127)

In each of the two media we define a scalar function of position,

qk(ro z), by
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2 - .
qk = Pk exP(W/ck). k = ln 2, (128)
and we write eq. (119) in terms of ¢ and q as
iy $o/cr = exp(-W/Ci) $qk, k=1, 2. (129)

By what is now a familiar procedure, we may show that
Pk exp(¢/ci) % q = constant on a field line = qk(¢), k=1, 2; (130)

and that
dq, (¢)

Ik 2

o OPW/C) = —gg— ., k=1,2 (131)
where we have used the fact that jk is toroidal, and we have defined
jk z (j‘)k. The meaning of eqs. (130) and (131) is analogous to that
of equations (8) and (9) of Paper I (see discussion following eq. [9]
therein).

Using eqs. (123) and (131), eq. (120) becomes

R 2 dq
Trx¥xkec anr éga exp(-v/CD) T~ - (132)

By expanding the left-hand side, we may write eq. (132) as

2 dq, ()
o O I« R z exp{-¥/C]) —ke— . (133)

This is to be solved simultaneously with eq. (122), which may be written

in an expanded form as

ey - B

2 .2 2
416G ::‘1 Cr 9, (¢) exp(-¥/C))

(134)
24 wGop.

We have made use of eqs. (121) and (130) in eliminating Py from the right-
hand side of eq. (122). Equations (133) and (134) are coupled, nonlinear
differential equations for ¢ and ¢; the quantity qk(k = 1, 2) has yet to

be determined as a function of ¢. We shall retain A, instead of ¢, as
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the dependent function in eq. (133) because it is convenient to work with
a self-adjoint form of this equation -- transforming from A to ¢ and

vice versa through eq. (125) is a trivial matter. To complete the
description of the cloud and intercloud media, wc must calculate the

functions qk(°) in a manner consistent with conservation of mass and flux.

2, Calculation of the Functions qk(°)’ k=1, 2.

The cloud boundary may be specified uniquely by the function ch(o),
which represents the projections onto the z-axis of the intersections of
field lines and the cloud boundary (see fig. 7). This amounts to
choosing a coordinate system (z, ¢), whose advantage will become evident
shortly. Then, half of the mass Gn&) of each medium in a flux tube

between ficld lines characterized by ¢ and ¢ +6¢ is, by definition,
Uk(O) r{z,%+6¢)

sm (8) = f dz f dr 2nr oo (r, 2), k=1,2.  (135)
Lk(ﬂ r(z,%)
Note that the integration over z is performed along the field line ¢,

between the limits

L (® = 0, if k= 1;
_ (136a)
=2,,(8), ifk=2
and
U(#) =2..(8), ifks=1;
x et (176b)

Znax(o). if k = 2.

If the system is ass'med periodic in z with wavelength lz. then
Z-‘x = 12/2. Tris would be the case if the contribution of the galactic
gravitational potential were included in eq. (122). If the system extends

to infinity, then Z.‘x 2 -,
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Since the intcgration over r is performed keeping z fixed (sce fig. 7),
we may write
dr = d¢ (ar/3%) (137)
and change variables from r to ¢. Using egs. (121) and (130), we elimi-
nate p, in favor of ¢ and we perform the trivial integration over ¢ in

eq. (135). We then solve for g, (¢#) to find that
K

2 U, (¢)
cc  dm (9) K
k k ar(z,e) viz,®) |,
qk(O) = ..zﬁ ™ f dz r(z,%) % exp[- =2 ] .
k

Ly ()
(138)
k=1, 2.

The quantity r(z,?) refers to the r-coordinate of the field line ¢ at z.
If we ignore conversion of one phase of matter into the other, the
functions qk(k =1, 2) are always given by eq. (138} in any equilibrium
state of the system, since the mass-to-flux ratio, dmk/do. in each flux
tube is a constant of the motion for each phase. If this quantity were
known either through observations, or through a complete theoretical
understanding of the mechanism which creates the interstellar flux, a
unique equilibrium configuration for a dense cloud could be calculated
by solving eqs. (133), (134), and (138) simultaneously, subject to ap-

propriate boundary conditions (see below).

3. Approximate Description of the Intercloud Medium

The preceding formalism gives a general description of the inter-
cloud medium. It takes account of the self-gravitation of the intercloud
ges and it does not assume that the magnetic field is either force-free
or curl-free. We shall not solve this general problem in this paper, al-
though its solution is straightforward. As we shall see in § VIIF, there

may be s need for the solution of this problem. Nevertheless, it seems
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senseless to proceed in that direction without understanding first the
effect of the following, somewhat simplified description of the intercloud
medium on the equilibrium of a dense cloud.

Observations indicate that the intercloud medium is rather hot and
tenuous compared to interstellar clouds (see § IIAl and footnote 5 in

§ VIA). We shall, therefore, assume that
p_= Py + 0 (139a)

and

C, + =~ (139b)

co 2

Consequently, the intercloud medium is unaffected by the graviational field
of the cloud and the intercloud pressure is constant along field lines,

If we assume uniformity at infinity, it follows that

Po 5 P2 = constant (140)
everywhere, and eq. (128} yields

9 =9 * Po‘ (141)
so that

dqo

Fr e = 0, (142)

Thus, the contribution of the intercloud medium to the right-hand sides of
eqs. (133) and (134) vanishes. The assumed poloidal field and uniformity

at infinity render the rarefied (eq. [139a]) intercloud medium not only
force-free, but current-free as well. In this approximation, the intercloud
medium simply confines a dense cloud through pressure forces and exerts
magnetic stresses at the cloud surface. Care must now be taken so that no

infinite forces appear across the cloud swface.

4. Continuity Conditions Across the Cloud Boundary

a. Gravitational Ficld

We write the Poisson equation in terms of E as (see eq. [12])
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Veg="-4anGo. (143)

To show continuity of the component of E normal to the cloud surface, we
integrate over the volume of a "pill-box" of height h and surface AS,

parallel to the cloud surface, and we use Gauss' thcorem to find
[gn] AS = - 4wGp AS h/2.

We take the limit h +~ 0 to obtain that

{g,) = 0. (144)

One proves the continuity of the component of E tangent to the cloud

surface by first noticing that eq. (12) implies that

¥xg =0. (145)

An integration over an elemental surface having two sides parallel and
two normal to the cloud surface and conversion into a line integral fol-

lowed by the usual limiting process yields
(8,qn) » O- (146)

That the gravitational potential is also continuous across the cloud
surface follows from
dv =%y - dx = -3 - dx (147)
and an integration over a path with one 2nd-point just inside and the

second end-point just outside the cloud surface. Use is then made of

eqs. (144) and (146) to obtain

(v} = 0. (148)
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b. Gas Pressure
The pressure of the intercloud medium is constant cvery-
where (sce eq. [140]). If we let s denote distance along field lincs, we

may write the component of the force equation parallel to B as

P
s - tPg (149)

where B - -%/3. There exists a jump in the right-hand side of eq. (149)
across the cloud boundary, but it is finite because E is continuous (see
eqs. [144] and [146]) and [p] is bounded and equal to the cloud density

at the surface, Pg- Therefore,

(P} = 0 (150)

and we have as a consequence that
P
<)
L

Note that in deriving the condition (150) we made no assumption whatsoever

about the angle at which field lines intersect the cloud boundary.

c. Magnetic Field
Our fomulation of the problem in terms of the magnetic
vector potential, rather than the magnetic field itself, guarantees the
continuity of the component (ln) of § nomal to the cloud surface (see
eqs. [123) and {124]).
To show that the tangential component of 8 is also continuous, we

first write the force equation as

.3(’0!1)0 ’E' %—;("3)' = 0.
2

We now take the dot product of the left-hand side with 8X, an infinitesimal
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displacement from one side of the boundary to the cother. In thc limit

8% + 0, we find {recall that §( ) = 6% o ?( )]

2 -2
s (; . %;) = [ P %;] =0, (152)

where we have used the continuity of E across the boundary and the fact
that the jump in the gas density is finite. Because of eq. (150), it
follows that

(8%] = o. (153)

2 2 2
* By * Bian

to the cloud surface) and [B“] - 0, eq. (153) implies that

Since B (where Btan is the component of the field tangent

(B 0. (154)

tan!

d. The Function q(¢).
It follows from the definition of L (eq. [128]) and
eq. (141) that the discontinuity of q ( = qQ within and q, outside the

cloud) across the cloud surface is given by
2

wvhich is finite.

An imporvant point must be evident by now. The formulat.on of the
problem in terms of potentials, rather than the fields themselves, led to
differential equations which have built-in all the necessary continuity
conditions across th. properly defined (by eq. [151]) cloud boundary.
Hence, we do not need to solve the full equations within the cloud, the
homogeneou. equations outside, and then match the two solutions. It is
now possible to solve the equations over a large region (which could be
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infinite) surrounding the cloud and the relevant part of the intercloud

medium. First we must specify the boundary conditions.

5. Boundary Conditions

Since R is a vector with only a ¢-component and since we assumecd

axial symmet1,”, we must have that
A(fr=0,2) = 0; (156)

otherwise its direction at r = 0 would not be uniquely defined. Reflection

symmetry about the plane 2z = 0 implies that

.Q&%;;zl = Q. (157)

2=0
We require that % be uniform at infinity and equal to ézB_. In practice,
"infinity" can be the surface of a large cylinder of radius R and half-
height Z, such that R and Z are much larger than the size of the cloud.

Then we may write

AR, z) = B_ R/2 (158)

and
A(r, 2) = B_ /2. (159)

Once we have a solution at hand, we may easily investigate the effect of
varying R and Z. (Instead of eq. [159] we could use periodic boundary
conditions equally well, in which case IA/azI:_z-O. This would be the
case if we considered the effect of the galactic gravitational field.)
Without the following being an independent boundary condition, we
note that the total flux (divided by 2») through the large cylinder of

radius R is given by

o ... =8 R/2.

total
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We also assume that on the surface of the large cylinder, centered
about the cloud, the gravitational potential is that due to a point mass

equal to the mass of the cloud (M) and lo:cated at the origin of coordinates,

that is,
GM
v(R, 2z} = - (160)
(RZ . z2)1/2
and
¥(r, 2) = - —-59‘—7—17-2— . (161)
(" + 27)

Since the next term in a multipole expansion of the gravitational potential
is the quadrupole one, the error due to this approximation is of order

(Riln)2 in the case R = Z, where R, is a representative dimension of the

i
cleud. We simply have to choose a large enough R for sufficient accuracy.

The assumed reflection symmetry about the plane z = 0 implies thot

iL._J_a: z a0, (162)

z= 0
Since the r-component of the gravitational field must vanish on the z-

saxis (this follows directly from eq. (143] by application of Gauss' theorem),

we mist also have that

L.t = 0. (163)

Having specified the boundary conditions, our problem is well-posed. We
may solve it provided that we know the mass-to-flux ratio in each flux
tube threading the cloud. To ostinite this quantity, we shall make use

of a reference state of the system.
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B. A Reference (Non-Equilibrium) State

The mass-to-flux ratio (dm/d¢) in a dense cloud may bc obtained from
high-resolution (albeit nonexistent) observations of the distribution of
mass and flux within such a cloud. We hope that in the time clapsed since
the publication of Paper I, where we pointed out how crucial the quantity
dm/d¢ is in determining the accessible states (and, in part, the dynamics)
of the interstellar gas, observers are putting some effort in this dircction.
In the meantime, we are forced to estimate dm/d¢ for @ dense cloud relying
mainly on a '"principle of avoidance.” Our estimate must be such that it
avoids contradicting either any physical law, or whatever meagzr observa-
tional evidence might exist.

There is such a state readily available and, in fact, overused.
Virtually all estimates of clpud parameters have relied on the assumptions
that a cloud is spherical, of uniform density and, wherever a magnetic
field is involved, it is also taken as uniform throughout. Clearly, this
is not an equilibrium state for a self-gravitating, magnetic cloud. We
shall use this state to calculate the mass-to-flux ratio both because it
is a simple one and also because we would like to illustrate how different
from this an equilibrium state actually is, even though the two have the
same mass and the same flux. We assume that the mass-to-flux ratio of
our system is the same as that of a spherical cloud of mass M, radius Ri’
uniform density L and permeated by a uniform magnetic field Bi' The
quantities G and B; are not fundamental and we shall assume no particular
values for them. However, Ri determines dm/d$ in this geometry (see

below). We easily obtain the various quantities in this state.

Half the cloud mass = M/2 = (2 n/3) o, Rf (164)

Total flux through the cloud = wR2 B, =2 7 0, . (165)
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We also have that

Ai(r) = Bi r/2, (166)
s0 that

o(r) = B, T7/2 = 4(x)/2 7. (167)

The gravitational potential and field are continuous across the surface

and are given by

2 + 2
3RS - |x]|
4 .
b= -2, (_i'i“"— . 1% s Rg; (158a)
4x R: ‘*
e . 2Ggp, = x| 2 R; (168b)
3 LR i
and
g = - 5% G oy (x| , IX] s R {169a)
4 R}
w g
® - -—S-G pi F;-l-z » le 2 Ri' (169b)

where I;I is the radial distance in spherical coordinates (|;|, 6, $).

‘The function q is

q; = P, exply; /€D, %] < Ry; (170a)

=P, . |x| > R;: (170b)

where *i is given by eqs. (168a, 168b), C is the isothermal speed of
sound in the cloud (we dropped the subscript since this is the only C
present), and Po is the intercloud pressure. As usually, we consider an
isothermal equation of state

- 2
Pi i c*. (171)

We note that q; cannot be expressed as a function of Oi alone. This is
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as expected because thc reference state is not an equilibrium one.

We now calculate the mass-to-flux ratio in each flux tube. It is

zero outside the cloud by assumption (sce eq. [139a]). We have that

2 2 r+éT
%nass in (r, r+r) z8m = 21 o, (c dz f dr r
L : .
(172)
R 2 2,172 .
27 Py T §r (Ri ) s TS Ri'
and that
flux in (r, r + 8r) & 603 = 2% r 8r Bi‘ (173)
So, we recall eq. (127) to find
¢ = B, r ér. (178)

Neither §m nor §¢ bear the subscript "i" (standing for "initial" state)
because both quantities are constants of the motion by mass and flux
conservation. Since the field lines are straight and parallel to the z-
axis, ¢ is a function of r alone and we may combine eqs. (172) and (174)
to obtain the desired quantity dm/dg:

p:-R, 1/2
d"°-2n ;‘(--L , o5 e
i

(175)
= 0, 29

where 'cl is given by eq. (165).
Before solving our equations, we write them in a dimensionless form.
C. The Dimensionless Problem

We measure the magnetic field in units of its value at infinity, Bi’

and the gas density in units of its value in the spherical reference state,

Py .The unit of length is chosen as C/(4nG pi)llz, which is related to

the Jeans length in the reference state. The: the unit of time is fixed
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by specifying the unit of speed as C, the isothermal specd of sound in the
cloud. It follows that the units of various quantities of interest are:

P} = p, ¢, (A= CB,/ (476 pi)l-/z, (e} = c?B,/anc o,

1/2 (176)

M) = p, €3/ an6 0)%2,  (dw/de} = o, C/B; (476G o))

1. The Basic Equations

In dimensionless form, our fundamental eqs. (133), (134), and (138)

become
2
-_a.[l _i(r,\ + -a-% R T da(®) exp(-y) . inside;
or Lr or a 2ui d¢
{177)
= 0, outside;
1 3/ 3 )
1 34 ), - = q(?) exp(-¥), inside;
T ar 7
. (178)
= 0, outside;
ZGZ(O)
a(®) = = M/ f dz r(z,0) (28 oyp[-y(z,0)], inside;
27 d¢ (] . E:
(179)
= Po' outside,
where (see eq. [175])
1/2
am(®) . R, (1--2] 7, eso,;
de i ® cL
-2
(180)
=0, ¢ 2 .Gl >

and oy is the (const-~nt) ratio of the magnetic-to-gas pressures inside the

cloud in the reference state, that is,

- n
a;, = Bilsw Pi. (181)

The terms "inside” and ''outside" stand for "inside the cloud" and "out-

side the cloud", respectively.
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2, Boundary Conditions

It is straightforward to put the boundary conditions, expressed by

eqs. (156)-(163), in dimensionless form. The result is

A(r =0, z) =0 (182a)
A(R, z) = R/2 (182b)
A(r, 2) = r/2 (182¢)
IA(r,2)| =0 ~(1824)
a 2 =0
L.2)4 =0 (182e)
or r=0
w(r,z) ] =0 (1821)
az z=0

v, 1) = - B/ 362+ )2 (182g)

Wr, 2) = - K/ 367 212 (182h)

The dimensionless form of eq. (151), which specifies the location of the

cloud boundary, is

P = P_ . (183)

3. The Reference State

We write in dimensionless form some of the parameters calculated

from the reference state for later convenience (see eqs. [164] - [170]):

o g3 . . 2
M/2 = 20 RY/3, 8, = R{/2, O oea1 = K72 (188)

2
A, = T/2, o, = /2 (185)
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= 2 12 . .
‘l'i = - (3 Ri = lxl )/6, T s Ri'
(186)
= - R?/3|I|, rzR
q; = exp(¥;), 1%l < Ry
(187)
-
= Po , Ix( > Ri'

We express, for later reference, the initial gravitational cnergy
("g) of the cloud and the magnetic energy (Hm) inside the cloud in units
of the cloud thermal encrgy (U). In terms of our dimensionless parameters,

we find the following ratios:

Mol 7 U= (215 Y (187:A)

and

W- /U= (2/3) o (187-B)

which provide a rough measure of the relative strength of gravitational,

magnetic and pressure forces (cf. § VIC2c).

4, Free Parameters

It is clear that there are three free parameters in the equations,
namely, o, Po' and Ri' We may understand this on physical grounds. The
Bonnor-Ebert (non-magnetic) problem had only one free parameter related
to the characteristic Jeans length. Such a dimensionless length is ex-
pected to appear in our case as well. A second free parameter expressing
the relative strength of the magnetic and gas pressures in the intercloud

medium at infinity must also exist. Let it be
a = B2/8n P (188)
[ i o’

If the distribution of mass in the flux tubes threading the cloud (that

is, if the function dm/d?) were known through a detailed understanding
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of thc mechanism responsible for the gencration of the interstellar field,
the above two free paramcters would be sufficient to categorizc an
equilibrium state of the system. Neither observations nor‘theorctical
considerations can dctermine dm/d¢ at present. llence, in reality, our
problem contains two free parameters and a frec function. It is only
because of the simplifying assumption, that the system developed from an
"initial" uniform statc through continuous deformations of the field lines
(under flux-freezing), that the free function say be specified by only onc
additional parameter.

For completeness, we note that if wc had chosen as units of length
and density the qulntiilcs (:z/(hcl",)”2 and Polcz. respectively, a€,
would have replaced ay in eq. (177) and Po would have been replaced by
unity in eq. (179). However, R1 would nat hsve been sufficient by itsclf
to specify dm/de; specificati;n of the density of the reference state, 0
would have been necessary (see eq. (175]). We choose to work wvith the set
(Gi' Po' Ri) rather than (uo. Py Rl)' The externs] pressure Po is
directly related to forces at the cloud boundary; we say obtain equilibrium
solutions in which the cloud has expanded or contracted reclative to the
reference, spherical state by simply choosing Po <1, or Po > 1, re=
spectively, if gravity is weak.

By definition, the parameters 850 94 and P° are related:
“i =a P° . (189)
Altogether then, the free parameters are Ri and any two of the three
quantities in eq. (189).

D. Method of Solution
There were no analytical or numerical methods available to solve the

simpler problem of Paper I. We could not expect that there would be any
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for the present probles. . Lquations (177) usd (178) are formally similar
(but not idontical) to eq. (Cl) solved in Paper 1. A similar approach
suggests itsclf. However, we now face the complication u:u eqgs. (177}
and (178) must be solved simultancously. To complicate matters further,
the cloud boundsry is not known in sdvance; it must, thereforc, be trested
as a frase boundary. We found that no asount of advanced knowledge of
methesatical and numerical techniques could help us. A sethod basced on
simple physical thinking worked. Its underlying ideas are as follows --
for further detalls, see Appendix A.

Guess s gravitational and a sagnetic potentis! ¢ snd A, respectively,
(and, therefors, a gravitational snd » magnetic field). ODistridbutc the
matter in the various flux tubes within a {guessed) cloud boundary in such
s sanner (consistent with the conservation of the sass-to-flux ratio) that
gravitational and pressure fo.rcos sre in exact balance along field lines.
In genersl, this diseribution of astter will not be consistent with the
guessed ¥ or with the guessed cloud boundary. Calculate, therefore, the
new ¢ and the new cloud boundary implied by the new distribution of matter.
Use ths Istest vy snd the lstest distridbution of matter to calculate the
current density necessary to balance sl) forces in a direction perpendiculur
to fleld lines. This curront density will not, in genersl, be consistent
with the guessed set of field lines [0(r, 1) = rA(r, 2z)]. It (and the
latest ¢) sust, therefore, be used to determine a new set of field lines.
The entire process is repested until the distribution of matter, the
gravitational field, the current density, and the magnetic field are all
sutually consistent and pressure equilibrium scross the cloud boundary
is satisfied.

In practice, the above iterative method of solution is unlikely to

converge. It is necessary to introduce two independent relaxstion pars-
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mcters (sec Appendix A), which provide a quantitative measure of how

much better or worsc the potentials of one iteration are compared with

those of the previous iteration. In addition, to avoid violent oscillations
of the cloud boundary, we introduced a third relaxation parameter. We

shall refer to our acthod of solution as a "relaxation iterative pro-
cedure" (RIP) or, more specifically, as a "triple-relaxation iterative

procedure” (TRIP) -- indicating the number of relaxation paramecters involved.

E. Equilibrium States

1. A Preview of the Results

To span the entire three-parameter space of solutions is not only
impossible, but also senseless. Physical considerations can limit the
parameter space from the outset. Moreover, the behavior of solutions be-
yond a certain range of values of each of the three free parameters scems
to introduce no new features.

The first physical consideration stems from our stated interest in
star formation. Irrespective of the mechanism that may bring a cloud to
8 critical state, self-gravitation must become important if a cloud is to
collapse. We, therefore, exclude fromour present study the cases in which
the mass-to-flux ratio is so small that gravitational forces play only a
minor role in the equilibrium of a cloud. Nevertheless, we used thesec
cases to test the accuracy of TRIP. A small enough Ri represents this
class of cases. (Recall that the mass of the cloud is proportional to
5

(see eqs. [181], [171] and the unit of pressure in eq. [176]), we choose

S . 2. )
while its flux varies as Ri, so, "/oal « Ri]. Given an a; and a Po

R, small enough so that the equilibrium state is one of pure pressure

i
balsn’.e between the cloud and the intercloud medium. The initial cloud

boundary expands or contracts along field lines according to whether
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Po <1 or Po » 1, respectively; the magnetic ficld remains uniform cvery-
where. The location of the boundary may easily be calculated analytically.
We found that the computed and calculated states differed by at most I%.
(For a more detailed discussion of numcrical matters, see Appendix A.)
Although some of these states represent a prolate (or, filamentary) dis-
tribution of matter about the magnetic field (which simply provides a
rigidity to a filament with respect to changes in its shape) and may have
some relevance to the interstellar medium (see discussion in § VIC3b), wc
shall discuss them no further in this work.

To study the effect of gravitational forces on the equilibrium statces,
we fixed a, and we chose P° £ 1. Thus, with the intercloud pressure
initially smaller than the cloud pressure, & cloud may contract with re-
spect to the spherical reference state only as a result of self-gravitation.
The larger Ri is, the more the cloud contracts, until an increase of Ri
by as little as ~ 1% yields no more solutions. For a given a; and Po,
we shall refer to such a state as a "critical" state for gravitational
collapse, realizing that the true critical mass for the given flux and
the given external pressure may actually be a few percent larger than
the values determined in this manner -- if an equilibrium state is too
close to the critical one, numerical noise may set it into collapse.

WNe studied the effect of the external pressure by fixing a, and Ri
to such values that the cloud was hardly self-gravitating, and then we
kept increasing Po above unity. Gravitational forces came into play
before long. There is, however, an important diff.rence between equilibrium
states with small and those with large external pressure that allows us
to determine whether a dense cloud formed by slow accretion of matter or
by an increase in the intercloud pressure (see § VIIF). If high resolution

observations detemmine the detailed distribution of matter within a dense
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cloud, our solutions suggest that we may discriminate between these two
mechanisms of densc cloud formation on the hasis of that obscrvational
evidence alone.

The useful range of frec paramcters with which we shall concern our-
selves here is

0.2 sa, s1.0, 0.5 s Po s 4.9, (190)

i
For most pairs of parameters (°i' Po) studied, wec kept increasing Ri until

a critical state was determined. The value a, = 1.0 is alveady large enough
to reveal the behavior of solutions with a; » 1. Although eq. (189) and

the range of values shown in eq. (190) imply that 0.04 < a, s 2.0, we only
studied in detail those cases for which 0.1 s a s 2.0. These values of

a, are certainly representative of conditions in the intercloud medium as
observations and theoretical gonsidorations indicate at present.

The following are a few of our general conclusions to be discussed
below. In all critical states determined, the cloud mass exceeds the
Bonnor-Ebert value for a cloud of identical temperature and external pressure.
A cloud flattens along the field before reaching a critical state; it is
flatter the stronger the field. It is also flatter the larger the inter-
cloud pressure. Compared to its value in the reference state, a often
decreases in the equatorial plane because of flattening. This suggests
that the effect of the cloud pressure on the nonhomologous contraction and
collapse of a cloud cannot be neglected, unlike the case of homologous
contraction. Spherical contraction of a cloud as a whole in the presence
of an interstellar field of reasonable magnitude has but an academic
significance. So does homologous contraction.

The Bonnor-Ebert calculations have shown that a critical state is

characterized by a ratic of the central-to-surface density always equal
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to 12,3 rsgardlcss of the cloud temperature and the intercloud pressurc.
Our solutions show that the critical ratio p /oo increases as P decreases;
it also increases as o incresses. Therc are good physical rcasons for
this behavior and we shall discuss thea below.

We now examine some of the equilibrium states in more detail. We
use the dimensionless variables of § VIIC throughout, unless wc notc other-
wise. We shall give a few examples in dimensional form at the end, where

we shall also provide gemeral conversion formulae and scaling laws.

2.  Depsndence on li

For a fixed pair of parameters (u‘, P°), we determined equilibrium
states for different values of R‘. This situation corresponds to a study
of a collection of sphericil clouds of constant (but unspecified) temper-
ature, of uniform (br.t unsipecified) density embedded in an intercloud
medium, whose pressure is some fixed multiple (@ 1) of the initial cloud
pressure, and threaded by a uniform (but unspecified) magnetic field.
Each cloud has a different radius. We then relcase the clouds to rcach
mechanical equilibrium. We discard the ones with small enough radii for
self-gravitation to be unimportant and we discuss representative ones
among those which did not collapse.

We take the magnetic pressure to be initially half of the cloud
pressure (ui = 0.5) and the intercloud pressure to be somewhat smaller
than the cloud pressure (Po = 0.9). If it were not for self-gravity, a
cloud with these parameters would expand along field lines. Figures 8a,
8b, and 8c exhibit three equilibrium states characterized by three dif-
ferent values of Ri' namely, 2.5, 2.7, and 2.8, respectively. Increasing
Ri further by 2% gave no solution; the cloud collapsed for a large number

of choices of relaxation parameters. The state Ri = 2.8 will be referred
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to as a critical state. Each ordinate represents radial distance from
the axis of symmctry (z-axis), while cach abscissa represeats distance
from the center of the cloud along the axis of symsctry. For case in
comparing an equilibrium state with the unifore refcrence state, we
labeled both axes in units of R, the initial radius of the cloud in cach
of the three cascs. The curves bearing arrows represent field lines; each
is labeled by its r-coordinate in the corresponding reference state, in
which ficld lines wcre straight and equidistant. The solid, oblute curves
are isodensity contours and arc labeled by the valuc of the density at
equilibrium (in units of the uniform density, oy of the spherical refer-
ence state;. The spacing (4p) between successive isodensity contours is
fixed so that the distance hetween theam is inversely proportional to the
mean pressurc gradient in the interval. The outermost curve represents
the cloud boundary (p = Po there). The dashed curves represent contours
of equal magnetic-field strength. To avoid repcating the awkward term
"equal-magnetic-field-strength contours', we shall refer to these curves
as "isopedion"” contours.8 Figures 8a, 8b, and B8c (and all similar figures
below) show only the immediate neighborhood of the cloud in each case be-
ceuse at distances larger than about ZRi from the cloud center the field
is virtually uniform and within a2 few percent of its value at infinity,.

One may take as a measure of the degree of flattening of a cloud the

quantity

f = /r (191)

z »
max max

where Zoax 18 the maximum extent of the cloud alorg the z-axis and T aax
is the equatorial radius of the cloud at. equilibrium. The flatter the

8. T?e term "isopedion" (pronounced isap'edeon) derives from the Greek
sos + pedion and translates literally into "of equal field [strength]."
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cloud, the smaller f is.. Several qualitative features of the solutions
become cvident by cxamination of figures 8a, 8b, and 8c.

As Ri increases, the cloud contracts further and furtper (compared
with its corresponding spherical initial state). The magnetic field im-
pedes contraction in the lateral direction. The flattening increases with
increasing Ri and so does the central density and the central magnetic
ficld. The isodensity contours are cblate, indicating the relative ease
with which mass can slide along field lines than across them under flux-
freezing. In fact, the isodensity contours are meie obia. near the cloud
center than they are at the boundary -- the more so the larger Ri is. The
magnetic field strength has a maximum at the cloud center and a minimum at
exactly the position of the equator (Bnin = 0.912, 0.793, and 0.753,
respectively, for each of the states of fig. 8). This is a general property
of the solutions. ‘

From the isodensity and the isopedion contours of each equilibrium
state, one may estimate the ratio of the magnetic and gas pressures by

using the expression

agl(r, 2) = a; BA(r, 2)/pg(r, 2). (192)
In the equatorial plane (2 = 0), ag has a maximum at r = 0. On the contrary,
ag increases as z increases while r is kept fixed. The former behavior
of ag reflects the relative ease with which matter slides along field
lines, the most deformed of which occur at (very roughly) r = 0.6 Ri'
The increase of ae with z is mainly due to the ''unloading'" of matter from
the outlying portions of field lines under the action of the gravitational
field of the cloud.

As R, increases (and the gravitational forces become stronger), ag

i
at the cloud center increases. In all cases, the general behavior of ar
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within the cloud is as described in the preceding paragraph. We note

that ag at the cloud center has decreased bclow ay in each of the three
states of fig. 8 (by 20.9%, 13.4%, and 0.1%, respectively). However, this
is by no means a gencral phenomcnon. If a; is chosen small enough, uf(U,D)
is expected to increase because t-cn Bf(0,0) « pf(D,D)K, where x = 2/3,

so that af(0,0) « pcl/S. (We shall discuss the exponent Kk below. We have
verified that uf(0.0) increases somewhat above ay in the casc ag = 0.2.)

In figures 9a, 9b, and 9¢c, we plotted the dimensionless column (or
surface) density of each of the above three states as a function of position.
Column densities for two orientations of the line of sight are shown in
each figure. (i) With a line of sight parallel to the axis of symmetry,
an observer would see the column density uf(r) as he moves a telescope
beam away from the cloud center. (ii) If the line of sight lies in the
equatorial plane, one would observe the column density cf(z) for a similar
motion of the beam. [The subscript f signifies a "final" (that is, equi-
librium) state.] The column density 9 of the corresponding spherical
reference state is showa in each figure for comparison. [The subscript i
signifies the reference (“initial") state.] We now compare figs. %9a, 9b,
and 9c¢c.

As Ri increases, the peak column density cf(r = 0) increases, reflect-
ing the larger lateral compression of the field by the stronger gr vitational
forces. Yet, the maxima of the curves cf(r) are relatively flat because
the magnetic field resists compression in a direction normal to the field
lines. At equilibrium, the fraction of the cloud mass found at large
radii is relatively small; in particular, it is smaller than that predicted
by the uniform initial state. The departure of the column density af(r)

of an equilibrium state from that of the corresponding uniform state is
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solely duc to compression normal to the ficld lines; one-dimensional
contraction parallel to the field does not increase o(r).

The surface density as a functjon of z, af(z), shows a higher as
well as sharper maximum than of(r), indicating a larger compression
parallel to field lines. The maximum value af(z = 0) increases as Ri does;
so docs the ratio of(z = 0)/of(r = 0), which provides another mcasure of
the flattening of the cloud. At equilibrium, a considerably smaller
fraction of the cloud mass exists away from the cloud center along the
axis of symmetry than it did in the corresponding uniform state.

Figure 10 exhibits the functions q{%) in each of the three states
under consideration; they are plotted against the normalized flux @/oc!.
Since all three states have the same ay and Po’ each curve is labeled only
by the value of R, of the corresponding initial state. Note that L
is different in each state because it depends on Ri (see eq. [184]). As
Ri increases, the curve q{¢) suffers a downward shift. This is so because
q depends exponentially on the gravitational potential (which becomes
more negative as Ri increases) and only linearly on the pressure (see
eq. [128)).

Bef - ¢ discussing the dependence of suvliutions on the external pressure,
we pcint out that the critical state of fig. 8c has oc/os = 15.9, a value
larger than the Bonnor-Ebert critical ratio. We shall return to this

point in discussing some general conclusions.

3. Dependence on Po

How do the properties of equilibrium states vary as we increase Po
vwhile keeping a, and Ri €ixed? A series of solutions which differ only
in Po corresponds to equilibrium states of an initially spherical cloud

of uniform (but unspecified) density, of constant {but unspecified)
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temperaturc and of a fixed initial radius, threaded by a uniform (but
unspecified) magnetic fiecld which differ only by the value of the external
pressure. We shall not discuss the case in which the intercloud pressure
is smaller than the internal (cloud) pressure so that the cloud acquires
a prolatc shape by expanding along field lines. We choose Ri small enough
(= 2.4) so that gravitational forces are initially weaker than (internal)
pressure forces (sec eq. [187-A]), and we take as before = 0.5.

Figures 1lla, 11b, and 1ll¢ repre%ent equilibrium states with Po = 1.9,
2.9, and 3.9, respectively., We could not obtain a solution with Po = 4.9,
The isodensity and isopedion contours and the field lines are labeled as in
figs. 8a, 8b, and 8c. Figures lla, 11b, and llc reveal the following vari-
ation of physical parameters as P° increases. (i) The cloud contracts in
such a manner that its oblateness increases. The degree of flattening (see
eq. {191]) is f = 0.47, 0.40, and 0.34, respectively. (ii) The central
density as well as the ratio of central density and surface density also
increase (pc = 7,32, 13.2, 31.1, and pc/ps = 3.85, 4.55, 7.97). (iii) The
central magnetic field is enhanced further, while, on the contrary, the
minimum value of the field at the cloud equator decreases (Bmin = 0.791,
0.5587, 0.370). (iv) The ratio of the magnetic and gas pressures at the
center increases [uf(o, 0) = 0.39, 0.45, 0.53], whereas at the equator it
decreases [uf(r-‘x, 0) = 0.165, 0.053, 0.017]. It is still the case that
at a distance of about ZRi from the cloud center the magnetic field is
nearly uniform and within a few percent of its value at infinity. The
above dependence of the physical parameters of the cloud on Po can be
understood on physical grounds.

That the cloud should become flatter as the external pressure in-
creases follows from the fact that along field lines the only opposing

force is due to (internal) pressure gradients, while in the lateral direction
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magnetic forces come into play. The incrcase in the central magnetic
field and gas density with increasing Po has as a primary cause the
inevitable compression associated with the larger external pressurc «nd
as a sccondary cause the stronger gravitational field, which the primary
compression gives rise to. However, the increase in the ratio of the
central-to-surface gas densities is a secondary effect entircly due to
the presence of gravitational forces; such an increase in ac/ps does not
appear if self-gravity is unimportant, in which case the (dimensionless)
density is uniform inside the cloud and equal to Po' Finally, the increase
of ag with Po at the cloud center is partly duc to gravity.

If Ri is very small (so that gravitational forces are negligible), an in-
crease in Po results in a compression of the cloud along field lines. As
a consequence, ap decreases everywhere inside the cloud (unless @, << 1).

It is also reasonable that ag at the equator should decrecase as the
external pressure increases. This is a consequence of (i) the equality
of (the dimensionless) g and Po at equilibrium, and (ii) the decrease
in Blin (at the equator) which accompanies the larger distance between the
field line just attached to the cloud equator and those outside the cloud
(which have no mass loaded on them, so that they cannot but be "left behind"
as the cloud contracts).

Figures 12a, 12b, and 12c exhibit the surface densities corresponding
to the states of figs. 1la, 11b, and llc, respectively. The curves are
labeled as in figs. 9a, 9b, and 9¢c. It will suffice to remark that the
variation of the surface densities of(r) and of(z) with Po is qualitatively
similar to their variation with Ri (discussed in § VIIE2 above), except

that the maxima are now higher and sharper -- a consequence of the larger

compression caused by a larger Po.
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The variation of q with ¢ for each state of fig. 11 is of intecrest
and is shown in fig. 13. Since ay and Ri arc the same for all three states,
each curve is labeled with the value of Po in that state. Note that L is
the same for all thrce states now (contrast fig. 10). As Po increases,
a downward shift takes place as discussed in connection with fig. 10, The
shift is larger at thc center of the cloud than at the ecquator. This is
so because of the exponential depcndence of q on the gravitational potential,
which, upon compression, becomes considerably altered (more negative) at
the cloud center but not so much at the equator. The increase of the
slope of q(¢), as Po increases, implies larger current densities and

stronger magnetic forces (sce eq. [131]) and is a result of the relatively

large deformation suffered by field lines.

4. Dependence on a;

With Po = 0.9 and R, = 2.5, we obtain equilibrium states for a, = 0.

to

0.5, and 1.0. This situation corresponds to a study of the equilibrium
states of an initially spherical cloud of uniform (but unspecified) density,
of constant (but unspecified) temperature, threaded by a uniform (but
unspecified) magnetic field and of a fixed initial radius as the ratio
of the magnetic-tn-gas pressure at infinity increases (see eq. [189]) from
0.222 to 0.556 to 1.111. We chose Ri such that the initial gravitational
energy of the cloud was smaller than the thermal energy but not negligible;
specifically, IHgI/U = 0.83 (see eq. [187-A1). The value of Po was taken
somewhat smaller than unity to eliminate compression due to the external
pressure.

We have already discussed the state with a, = 0.5 (see figs. 8a and
9a). Figures 14a and 14b exhibit the isodensity and isopedion contours

and the field lines of the equilibrium states characterized, respectively,
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by a, = 0.2 and 1.0. By comparing figs. l4a, 8a, and 14b, we conclude
the following as o, incrc;scs. (i) The cloud beccmes flatter -- cspecially
the interior isodensity contours. (ii) The central density decreases
(pc/ps = 6.31, 3.82, 3.14). (iii} The éentral magnetic fleld also de-
creases, while its minimum valuc at thc equator increases (Bmin = 0.834,
0.912, 0.943). (iv)} Compared to its valuc in the initial state, the
ratio of the magnetic-to-gas pressure decreascs as a; increases
[af(o,O)/ui = 1.20, 0.79, 0.64], whereas its minimum value at the equator
increases [af(rmx.O)/ui = 0.77, 0.92, 0.99). (v) The larger a;, the
closer the distance from the cloud center at which the magnetic field
reaches its value at infinity within a few percent.

We note that the cloud boundary changed by somewhat less than 10% as
o, increased by a factor of 5, and that readjustment took place mainly in
the lateral direction. This is so because we had chosen Ri such that
gravitational forces did not dominate the pressure forces. Thus, the
field lines of the equilibrium state with a; = 0.2 were not very deformed
in the first place. By increasing a; (and, therefore, the relative strength
of the magnetic field), the field lines straightened out. But the re-
sulting redistribution of matter was not large enough to alter significantly
the gravitational field at the boundary which is (almost) determined by
the total mass only. Yet, the redistribution of matter that accompanies
the straightening of field lines affects significantly the gravitational
forces near the center (recall eq. [143] and Gauss'’ law). This is evidenced
by the decrease of Pe (and Bc) by a factor of two as we go from the state
of fig. l4a to that of fig. 14b.

It is significant that the ratio rxt.(o,())/a.1 was larger than unity

in the case a; = 0.2 and smaller than unity in the other two cases. This
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implies that in the proportionality Bc « p: the exponent is greater than
1/2 if o is small and smaller than 1/2 otherwisc. We are beginning to
get a handlc on thec exponent «, which other workers have routincly been
taking as 2/3.

The changes in the surface densities of(r) and of(:) as a; increascs
are obtained by comparing figs. 15a, 9a, and 15b (correspouding, respectively,
to the equilibrium states of figs. 14a, 8a, and 14b). It is clear that,
as o, increases, the surface density through the cloud center decreases
due to the smaller compression. Further comments on these figures would
be redundant in view of our detailed discussion above.

In fig. 16, we plotted q(#) for the three states of figs. l4a, 8a,
and 14b. The curves are labeled with the values of a;. As ay increases,
the curve q(?) shifts upward and becomes steeper. The shift is larger at
the equator (o/oc! = 1.0) because Po is fixed and ¢, which is negative
everywhere, increases (sce eq. [128]); at the center, the increase in ¢

is partly compensated by the reduced gas pressure.

F. Discussion of Results and Comparison with Observations

Under the assumption that the magnetic field is frozen in the matter,
we have determined equilibrium states which can be reached by isothermal,
self-gravitating, magnetic interstellar clouds contracting nonhomologously
from an initially uniform, spherical state and surrounded by a hot and
tenuous intercloud medium. Even though we solved a time independent problem,
we were able to make a cocnnection between an initial and a final state by
conserving the mass-to-flux ratio (dm/d¢) in each flux tube of the system.
We emphasized, however, that, if the function dm/d¢ were known either from
theoretical considerations or from observations, our method would determine

a unique equilibrium state for each cloud if the pressure and the magnetic
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field >f the intercloud medium are known.

1. Some General Conclusions

The physical paramecters of an e¢-1ilibrium state show large departures
from those of a corresponding uniform, spherical s:ate. Equilibrium states
are characterized by oblatc isodensity contours, the more so the stronger
the initial magnetic pressure relative to the gas pressure and the larger
the thermal pressure of the external medium. 1t is not 'difficult to obtain an
enhancement of the column density through the center of a cloud by an
order of magnitude cven for the moderate range of parameters for which
we presented solutions (sce, for example, fig. 12c). The mass density,

o, may easily vary by more than an order of magnitude between the center

and the surfacc of a cloud (for exsmple, see fig. Bc.and. even better,

fig. 19a below). The ratio °c/°S in a critical state is larger, the larger
ay and the smaller Po are -- in fig. 19a, this ratio is equal to 23. Since
cloud masses are usually estimated by assuming a spherical shape and a
uniform density, they may be overestimates. 1If a cloud is observed to

have a more or less circular cross section, it does not follow that its
dimension parallel to the line of sight is nearly equal to the observed onc.

a. The Slope of lognc versus logpc

An invaluable contribution to our understanding of the formation
of interstellar clouds by contraction from a more diffuse state of matter
with a frozen-in field may soon be made by more accurate observations of
the Zeeman effect in colecular clouds. We mentioned in § IIID that the
somewh~t uncertain data for H I clouds shows a correlation between logB
and lognH. We also pointed out that, although Verschuur (1970a) drew a
stra;ght line of slope 2/3 through the data points, a line with a slope

of 1/3 would fit the uncertain data at least as well. We used our
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equilibrium solutions to predict what such a slopc should be.

Figure 17 is a master plot on a log-log scale of the ratio, Bc/Bi’
of the central magnetic field and its injtial (uniform) value against the
ratio, pc/pi, of the corresponding values of the gas density. Each value
of a; gives rise to a different curve. Three curves are shown (for wy o=
0.2, 0.5, and 1.0). To obtain the curve labeled (ai =) 0.2 we uscd
thirteen (i3) equilibrium states. The curve e, = 0.5 represents thirty
(30) equilibrium states, and that with a; = 1.0 fourteen (14) states. The
scatter of points about each curve was scarcely larger than its thickness.
For each value of a, two states differing only in Ri are located in
such a manner that the state with the larger Ri is higher up along the
curve (representing a larger central field and a larger density). Simi-
larly, two states differing only in Po fall on a curve of constant ay
in a way that the state with £he larger Po is located higher up alonyg the
curve. States which have the same Ri and Po but different a; fall on a
nearly straight line with slope roughly equal to 1 -- one may check this
for the three states of figs. l4a, 8a, and 14b. The dashed curve is a
line with slope 2/3, representing isotropic contraction.

It is clear that, as ay increases, to produce a particular enhance-
ment of the magnetic field a considerably larger central density is re-
quired. It is important to note that the slope of each curve varies along
its length; it is smaller the smaller the density enhancement. As we have
seen in subsection E above, smaller density contrasts result from small R.1 --
corresponding to weak gravitational forces. Therefore, the above variation
of the slope of each curve conforms with the reasonable expectation that,
until gravitational forces become strong enough, contraction due to an

increase in the external pressure proceeds mainly along field lines. Singe
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most Il ] interstellar clouds arce not sclf-gravitating, as evidenced
by their low densitics, whatever their formation mechanism, it must be
effective over very large distances along field lines. ([For a cylinder
of intercloud matter (nic = 0,2 cm's) of radius 5 pc to contain a mass
of 300 MG' it must have a length of about 710 pc.]

Beichman and Chaisson (1974} measured an apparent Zeeman splitting
in the 1665-Miz line of thezﬂs,z,J = 3/2 ground state of Oii, which pro-
duces a splitting of 3.27 Hz per milligauss (Radford 1961). They reported
a field of about 3 mgauss. The authors themselves caution, however, that
the interpretation of their obscrvation is inconclusive because the ohscrved
circular polarization may originate in two different regions of maser
action moving with different radial velocities within their beam width.
fAs it was earlier pointed out by Heer (1966), circular polarization may
result from saturation effects in a maser amplifier with energy levels
similar to those of OH.] Clearly, further observations are necessary to
settle this issue. Whatever the observations may show, the theoretical
justification provided by Beichman and Chaisson for their result is in
4.5 cm's

error. They took 10 as a8 known density of the Orion molecular

cloud and argued that, since the interstellar magnetic field is 3 ugauss
4.5 cm'3

at a density of about 1 cm's. a density of 10 implies a field

of about 1 mgauss according to the '"law"” B « 92/3. As we have just seen,
the exponent (x) is more likely to be less (perhaps even much less) than
1/2. Even a magnetic field weaker by one or two orders of magnitude than
the one which these authors claimed to have measured would certainly have
been able to make further contraction proceed nonhomologously and non-
isotropically -- thus decreasing « from their assumed value of 2/3. We are

not suggesting that large magnetic fields are impossible to achieve. We
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are proposing, however, that such ficlds will be found in highly flattened
clouds? of very high density (10° - 10° 0”3 for 173 s x < 1/2).

Unless the magnetic field is initially very weak (ui < < 1), the
formation of a cloud will enhancc the field according to a rclation
Bc « p:, where x is a positive function less than 2/3 that varies slowly
as the contraction procceds. Since fig. 17 shows that x is likely to be
1/2 or less, it follows that « at the cloud center may remain constant
or even decrease upon contraction, We have also seen that, in the cqua-
torial plane, a decrcases with distance from the cloud center. This
likely constancy or decreasc of a upon contraction would have profound
effects on the further evolution of a cloud as it relates to star formation.
In particular, it follows from the work of Chandrasekhar and Fermi (1953)

on the Jeans instability in a uniform medium that the minimum scale LJ

that can collapse in a direction normal to the field is

e L?e vi)
4Go
l(
aCz (193)
= X a4 2.
4Gp

With a decreasing upon contraction and flattening, the possibility of frag-
mentation, which cannot occur during spherical isotropic contraction,
arises (see also subsection F4 below). The effect will be more pronounced
the larger a is initially. Since stars form predominantly in groups,
fragmentation must be predicted by any theory of star formation. Fig. 17
reveals only the rudiments of such ﬁ process; it would be very useful to

extend it to include larger enhancements of the central field and gas

9. Recall that, in all cases which we studi=d, the stronger gravity was,
the flatter the isodensity contours became -- especially near the
cloud center.
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density by considering larger values of Po.

One might think that, because the above discussion is based on the
assumption that the cloud remains isothe;mal during contraction, the con-
clusions reached would be qualitatively different if the cloud is allowed
to cool and thereby increase a. This is not so. If indeed the cloud cools,
the effectiveness of the internal pressure in balancing self-gravity along
field lines is reduced. Further flattening of the cloud is inevitable which
will tend to decrease the value of a. In fact, from our present and
previous considerations, it seems that a self-adjusting mcchanism is

operative that maintains a« close (if not smaller than) its initial value.

b. Correlation between the External Pressure and the Central Density.
The deduced correlation between the external pressurc and the

density at the cloud center (§ee figs. 1la, 11b, and 11:) while s, and
Ri,are kept fixed is shown in fig. 18 as a critical stite is approached.
The states plotted have a; = 0.5 and Ri = 2.4. The plotted values of Po
range from 1.1 to 3.9. This yielded densities in the range [4.1, 31.1}.
As in the case of fig. 17, the scatter of points about the solid line was
negligible. We reported in § VIIE3Z that the state with Po = 4.9 collapsed.
A state with P° = 4.0 yielded a central density of about 50, but we have
not included it in fig. 18 because it collapsed for a slightly different
choice of relaxation parameters. Apparently, not only are we close to
the critical state, but the parameters of the equilibrium states close
to the "plateau" of fig. 18 are very sensitive to Po. This is ruassuring
for the following reasons.

The non-magnetic Bonnor-Ebert calculations showed a similar dependence
of the central density on the external pressure. In fact, for each value

of Po two equilibrium states were possible: an extended one and a compact one.
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That is , a plot analogous to that of fig. 18 recached a maximum for somc
Pe and then decreased for larger values of Pt The branch of the curve
with a negative slope represcnted unstable states: to maintain a larger
central density, a smaller external pressure was required. The region of
increasing Po with increasing Pe represented stable configurations.

We tried to determine one of the possible unstable equilibrium states,
but our iterative procedure repeatedly led to collapse. This, together
with the fact that fig. 18 is the analogue of the stable branch of the non-
magnetic equilibrium states, are taken as strong indications (although not
a proof) that our iterative scheme can pick out only physically stable
equilibrium states. Unlike the case treated in Paper I, no unstable
equilibrium state can be determined by analytical means which we could
then use to test our above assertion.

The Bonnor-Ebert calculations showed that the maximum of the curve
logP° versus logoc occurs st lower values of Po as the mass of a cloud
increases. This reflects the effect of the stronger gravitational forces
due to the larger mass. The analogous phenomenon occurs in our case. For
example, the critical state of fig. 8c, which 1s characterized by the
same o, as the states of fig. 18, has P° = 0.9 and Ri = 2.8 and, therefore,
a mass larger by s factor (2.8/2.4)3 ™~ 1.6. Since its central density
is 14.3, if we attempt to plot it on fig. 18 it would fall slightly below
the horizontal axis and certainly leftward of the peak of the solid curve.

The qualitative effect of varying 8, is to shift the curve of fig. 18 --
to the left for a larger 8 and to the right for a smaller one. This is
s0 because the same external pressure causes a smaller compression and,

therefore, a smaller central density the larger a; is.



~135- LBL-3602

c. The Ratio pc/ps.

We have seen that the ratio pc/ps increases as Ri or Po increases,
while it decreases if a; increases. At a critical state, however, pc/pS
increases as a; increases or as Po decreases. This is intuitively clear.

A larger a; iwmplies stronger magnetic forces, which can be overcome only

by stronger gravitational forces arising from a denser central core. Simi-
larly, a weak external pressure does not aid the gravitational forces against
the magnetic forces; to overpower the latter, a larger central! condensation
is required. Yet, this dependence of pc/pS on Po is, in part, artificial.

If Po < 1 the cloud boundary would expand, provided that gravi-
tational forces were not present, so that pressure balance across the
surface would be achieved. Even if gravitational forces are present, it
is a well-known result that the radius of an isothermal (non-magnetic)
cloud would tend to infinity as Po + 0. In the magretic case, the polar
radius of the cloud will do so because the magnetic forces vanish along
the axis of symmetry. The extent of the cloud normal to field lines will
be limited because of flux-freezing. Since gravitational forces will main-
tain some degree of central concentration, the ratio pc/ps will increase
as Po (= Pg in our dimensionless variables) decreases. In this sense,
this result is artificial. One can see this formally by integrating the
force equation (149) from the center of the cloud to its surface along
the axis of symmetry to obtain the dimensionless result:

zmax(ps)

P ™ Pg ¥ J- ds o gs. (194)
0

Although . may decrease as Po decreases, if we divide through by Pg as
the latter tends to zero, pc/ps will keep increasing.

In spite of its "artificiality", the ratio °c/°s is useful. If
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it is measured to be large, one can deduce that the pressure of the
external medium is small. Since, as we have seen in § VIA (footnote 5),
orly an upper iimit on the intercloud pressure is known, a.by-product of
obtaining an accurate density distribution within a dense cloud will be
an irplied range of values for the intercloud pressure. To illustrate
this point further, we present a critical state with P° = 0.5 and a, = 1.0
in fig. 19a and its usual column densities in fig. 19b.

The radius R; is equal to 3,20. A state with Ri = 3.21 collapsed for
differcnt sets of relaxation parameters; hence, we refer to the state with
Ri = 5,20 a; a critical state. The isodensity contours reveal that there
is a very oblate central core oi re.atively high density and a fairly
extended envelop of relatively low density; the ratio pc/pS is equal to 23.0.
(One nay contrast the state of fig. llc characterized by Po = 3.9.) The
same effect is noted ir the célumn densities of fig. i9b, where the curves
of(Z) and af(r) fall fairly rapidly at first and then a "knee'" appears
before they fall to zero at the boundary -- contrast fig. 12c. Clearly,
there is a qualitative, as well as a quantitative, differsnce between
states with large and states with small external pressure. One can utilize
this difference to make a statement on the mechanism responsible for the
form: .ion of dense interstellar clouds.

There are two alternmative possibilities. (i) A cloud grows by
slow accretion of matter (mainly along field lines) until self-gravitation
becomes dominant. (ii) A rise in the external pressure increases the
central density and thereby enhances the strength of the gravitational
forces. Our solutions suggest that, at least in principle, one may dis-
tinguish between the two mechanisms from high-resolution observations of

the distribution of matter within a dense cloud. The first mechanism will
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produce an cxtended envelop of rclatively (compared to the core) low
density with a more or less cylindrical boundary, whereas the sccond
mechanism will give rise to no such envelop and, in addition, will producec
a cloud boundary more closely resembling in shape the interior isodensity
contours. We remark that extended envelops appeared in equilibrium states
even when a; was small, as long as P° was small, although in these cases
the cloud boundary was nearly spherical,

One might think that the ratio pc/pS = 23,0 in the critical state
of fig. 19a exceeds the Bonnor-Ebertcritical value mainly because of the
"grtificial" reason cited above. It is useful, therefore, to calculate
pc/E, where ¢ is the mean density of the cloud. This ratio is expected
to undergo a slower increase as Po decreases. We recall that in the

Bonnor-Ebert critical state this is
(pc/E) = 5.78. (195)
BE
In the (magnetic) state of fig. 19a, we find that
(p /)y = 6.9. (196)
The effect of the magnetic field is still to increase this critical ratio.

d, Critical States

Critical states are equilibrium states on the verge of gravita-
tional instability. They are useful because they set theoretical upper
limits on several observable cloud parameters (see § VI). We have pre-
sented only two such states, those of figs. 8c and 19a, characterized by
(ai = 0.5, Po =0.9, Ri = 2.8) and (u1 =1.0, Po = 0.5, Ri = 3.20),
respectively. We also alluded, in discussing fig. 18, that there is a
critical state somewhat more compact than that of fig. 1llc. The physical

quantities of a critical state depend on two of our three free parameters -~
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the constraint of being on the verge of collapse removes one parameter.

We determined most critical states by fixing ay and Po and increasing Ri

until no further solutions could be found. Physically, this corresponds

to the situation in which the ratio of the magnetic and gas pressures at

infinity as well as the cloud density are kept fixed while the cloud radius

increases (thus, including proportionally more mass than it does flux).
Quite generally, for a fixed ag» smaller values of Ri may collapse

as P° increases. For a fixed P_, larger values of R; are required for

o’
collapse as ay increases. The former behavior simply states that as the
external pressure contributes more to the contraction of the cloud, smal-
ler masses become able to collapse. The latter behavior states that

larger masses are required for collapsc if magnetic forces become stronger.
Since the values of a; and P° are not known in reality, we shall confine
ourselves to a discussion of the physical parameters of a single critical
state, that of fig. 19a, in a dimensional form. The conversion formulae
that follow may be used to find the dimensional parameters of any other
state presented. When observations provide us with the necessary informa-

tion on dm/d¢ and Po’ jt will be worth returning and extending this dis-

cussion.

2. Returning to the World of Dimensional Quantities

Dimensionless quantities are indispensable in solving a problem, but
often their numerical values ha&e a meaning only for the particular author
and a few devoted readers. It is imperative that at least one example be
provided in dimensional form. We choose the cri.ical state of figs. 19a
and 19b because a; = 1.0 and Po = 0.5, yielding o = 2.0, a value close to
what we currently believe as representative of conditions in a spiral arm

behind a galactic shock (see Paper II, § II). It is, however, impossible
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at present to decide whether the value a; = 1.0is representative of
conditions which would prevail if we (mentally) took a dense cloud and
expanded it in such a way that the field.lines straightened out while its
density became uniform (sce also discussion below). To kn;u the value
of ay requires a detailed knowledge of how dense clouds form -- an open
question in theoretical astrophysics. Under the additional limitation
that the true mass-to-flux ratio of a dense cloud may be very different
from the assumed simple function (see § VIIB), we proceed with our example.
e let TSO denote the cloud temperature (T) in units of 50°K and
P18 denote the intercloud pressure (pext) in units of 1800 k deg/cms. Then
the iscthermal speed of sound in the cloud is (see eqs. {95] and [96])

2

C=0.64 (Tgy / w2 kassec. (197)

Let P° be defined by

2
P, = Py /o; C° (198)

where 5 is the uniform cloud density in the spherical initial state and

is related to the initial number density ("i)‘ including helium, by

Py = My Moy (199)

By solving eq. (199) for n and using eqs. (197) -- careful with the

units! -- and (198), we find that

3

n, = 36 P T., ca” . (200)

i 18”76 Tso

The number density of hydrogen is obtained from the total number density
through division by

n=1,1 for H I clouds; (201a)

= 1,2 for H2 clouds. (201b)
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If the dimensional initial cloud radius is Rcz, then

_ 172
Rcl = Ri C/(4nG pi)
(202)

1/2 1/2
=2.92 R, P/ T/ PT pe,

where we have used eqs. (198) and (197) to eliminate i and C, respectively,
To convert the ocolumn (or, surface) densities 9 and 9 of figs. 9,

12, 15, and 19b to dimensional form, we need to multiply by the unit of

density, Py» and the unit of length,C/(dnGpi)llz. We denotec the dimension-

al surface density by o and we easily find that

[
n, = 0.54 x 10° (/e )% 3 ofs gn/cm?, (203)

where o and o; are shown in the aforementioned figures. The (number)
column density of hydrogen (not the total) is, of course, obtained from mg

through multiplication by (nlme)'l. that is,

[

N, = 2.3 x10%0 (p/p 3172« )l cn 2, for H I clouds; (204a)

H 18 "o o
;

and

g " NH/Z, for molecular clouds. (204b)

2

The mass of the cloud is given by

M= (4 1/3) o R:z

3 ,1/2 .2 2 ,1/2
= 91.8 Ri P° TSO/ M P18 "8' (205)
Finally, from the definition of a; we obtain

B> (8o, c? ai)l’z
= 2.5 (g 918/90)1/2 ugauss. (206)
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In solving our problem we expressed the density and the magictic field
in units of their initial values. So, to‘find their dimensional values
in an equilibrium state, say at the cloud center, one simply takes the
dimensionless values in that state and multiplies by the results obtained
from eqs. (200) and (206), respectively.

For the critical state of fig. 19a (ui = 1.0, Po = 0.5, Ri = 3.20)
and its corresponding initial state, we calculate the following values

in the case of an H I cloud with T = 50°K and an intercloud medium with

- 3
Pext 1800 k deg/cm”,

Initial State:
¢ - 6.57  km/sec

M= 1320 My (compare eq. [97a])
-3 .3 (207)
n, = 72 cm 7, ni(H) = 65.4 cm
Rbl = 5,2 pe
Bi - 3.54 ugauss
Final State:
n, =828 e S n () = 753 >
-3 ) -3
ng = 36 cm 7, nS(H) = 32,7 cm
A =122 a3, AGH) = 111 e
Toax = 4,76 pPc
z = 2.60 pc
max (208)
B, = 9.42 wgauss
uc/ui = 0.62
Ny(r = 0) = 4.52 x 104 a?
Ny(z = 0) = 1.0 x 102 a?
3 2

gn/cm
0) = 23.5 x 10™°  gw/cm

B (r = 0) » 10.6 x 107

ls(z
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The quantity N"(r = 0) denotes the column density of hydrogen when the

line of sight is along the axis of symmectry, and NH(z = 0) when the linc
of sight lies in the equatorial plane an_d passes through the center of the
cloud. The quantities ms(r = 0) and ms(z = 0) have a similar meaning.
Since a telescope beam has a finite angular width, however, the observed
column densities will be smaller than the maximum values. We therefore
calculated the ratio My = (total mass/area normal to the line of sight)
for the above two orientations of the line of sight -- this is the quantity
observed if the cloud lies entirely within the telescope beam. Values

for other viewing angles will lie between these two. We find that

3 2

3.9 %x 107 < Mpy S 5.7 x 10°7 gm/cm”. (209)
The ratio of L and Mestel's critical value is (see eq. [108c])
1.9 s “m"“u < 2.8, (210)

Indeed, equilibrium calculations, in addition to giving us the dctailed
structure of a cloud, have faired better than non-equilibrium calculations
in predicting the parameters of a critical state.

The maximum observed column density of atomic hydrogen is 3 x 1021
en™? (van Woerden 1967). Our calculations indicate that such a cloud is
not collapsing. The rest of the calculated physical quantities are either
reasonable, or exceed the observed values -- a desirable result. We
mentioned in § VIA, however, that the scarcity of H I clouds with masses
larger than 1000 Mg may be due to their conversion into molecular clouds.
How, then, do our results compare with observed quantities in dense (dark
or molecular) clouds? (Before leaving H I clouds, we note that the state

of fig. llc corresponds to a mass of 1554 Me for the same "standard" para-

meters as assumed above.)
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We take T = 10°K, appropriate to a dark cloud, and Poxe = 1800 k
deg/cms. The mass now becomes (sce eq. [205]) only 15.7 Me, while the

finalcentral and mean densities have increased to nc(Hz) = 3.45 x 103

e and ﬁ(Hz) - 508 cn”>. The calculated equatorial and polar radii of
such a cloud are (see eq. [202]) Toax © 0.75 pc and Zpax - 0.41 pc. Al-
though the maximum density is well within the range of observed values

[103 - 104 cn's;'see § VIA) and the predicted dimensions are in good agree-
ment with observations, the total mass (of this particular equilibrium

state) is a factor of about 6 smaller than the observed values. In spite

of the possibility that the observed values may be overestimates, as we
remarked above, we do not think that that is the major source of discrepancy,
whose sources are very likely to be the following.

(1) The simplifying assumption that a dark cloud has the same
mass-to-flux ratio as some uniform reference state. We have already
discussed the uncertainties accompanying the assumed dm/d¢ as well as the
values of ay-

(1i) Matter in the immediate neighborhood of a dense cloud is
unlikely to have a negligible density. This would invalidate our assumption
that the external medium is force-free. Although we had formulated the
problem in subsections Al and A2 above without imposing this condition,
we solved it only with the force-free approximation of the intercloud
medium. When the parameters of this medium are better known, especially
in the neighborhood of dense clouds, it will be worth solving the more
goneral problem. An external medium which is not force-free is also
1ikely to permit a larger lateral contraction of a cloud and, therefore,

a larger enhancement of the magnetic field. As long as the external

medium is force-free, even with an external magnetic pressure small
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compared to the intercloud thermal pressurc, cnhancements of the ficld
by more than an o.der of magnitude are difficult to obtain.

(iii) If the galactic gravitational ficld is introduced, in which
case the boundary condition of uniform field at infinity must be substituted
by a more realistic, periodic boundary condition, the field lines in the
intercloud medium will inflatc in the manner described in § V. This will
weaken the gencral intercloud field -- and it is the mean value of this
field (not of a uniform one) along the line of sight which we mecasurec as 3
ugauss. Thus, the ratio BC/B_ will also increase.

(iv) We have sought solutions with 0.5 s Po < 4.9. Since the di-
mensionless quantity P, is the ratio of the intercloud and the cloud

pressures in the uniform initial state and since we gassumed an isothermal

transition from an initial to a final state, it might have been more
appropriate to have chosen Po > > 1. Dense clouds have relatively low
temperatures. Moreover, when (mentally) expanded to a uniform state (say,
Rcl increases by a factor of 2 or 3), their densities will drop by a

factor 10 - 30. If they are in pressure equilibrium in their final states,
thea a P° ~ 10 - 30 would describe conditions existing in the initial states.
Because of eq. (189) and since we have argued that % is roughly equal to
unity, it follows that a; ~ 20 would then be more appropriate for dense
clouds. As our results can show by a reasonable extrapolation, an equili-
brium state with such parameters will be highly flattened. Such configura-

tions are, in fact, observed at least within the Orion cloud complex (see

Morris et al, 1974).

3. Line Widths in Dense Clouds

Supersonic turbulence as a source of th. observed line widths in dense

cloud; has already been ruled out on the basis of its short life time (see
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§ VIA). Motions associated with gravitational collapse could explain in
a natural way the observed large line widths (see § VIA for references)
if only some decrcase in the line widths takes place as one observes
regions further from the cloud center. One can see why this is so as
follows. A cold, spherical, non-magnetic, massive cloud would collapse

under self-gravitation with a frec-fall velocity
v([X)= -(2 6 M(|X]) 7 1X11Y2, (211)

where M(|X|) is the mass inside the radius |X|. If one assumes that the

density is uniform, it follows from eq. (211) that
>
v(Ix]) = [%[. (212)

In this picture, the line of sight going through the center of the cloud
will detect the largest radiai velocities, which, in turn, will produce
the largest line widths.

It is well known, however, that, if gravitational forces are present,
a central condensation is inevitable. A density which decreases as ];l
increases could give rise to a free-fall velocity that increases toward
the cloud center. Equation (211) shows that this will be the case if ¢
falls off more rapidly than |§]'2. The observable implications of such
a8 case would be that the center of a spectral line would be formed at the
outermost layers of the cloud while the wings of the line would be produced
at the cloud center. Observations show that the most intense radiation
comes from the cente~ of a cloud and that the center of a spectral line
is more intense than its wings. This seems to suggest that the density
must fall off less rapidly than %72

Equation (212) is usually used in referring to collapsing clouds.
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Then the argument is made (for example, see Morris et al. 1974) that
because line widths do not vary much between the center and the boundary
of a cloud, collapse cannot be taking place. This is erroncous because

collapse may in fact be taking place in such a manner that
-+ +k
v(lxh) « [xIF, (213)

where k is a positive constant less than one.

Zuckerman and Palmer (1974) also claim that the collapse hypothesis
is ruled out by the high rate of star formation that would be implied if
all dense clouds were collapsing. We remarked in § VI that this is not
so if star formation Is not an efficient process. Observational evidence
Indicates that indeed star formation does not proceed with a 100 percent
efficiency (see review by Shu 1973b). Massive clouds often contain 105 -
106 ND’ while the mass of stellar clusters in the Galaxy is smaller than
10 M.

The traditional theoretical argument that has been advanced to support
an inefficient star formation process is that, following star formation,
the bulk of s massive cloud will be dispersed. A typical 05 star, the

51 ergs during its lifetime mostly

argument continues, would emit about i0
in the ultraviolet. A type LI supernova liberates a comparable amount of
energy. This energy would seem sufficient to disperse a 10S He cloud,

whose (negative) gravitationsal energy is typically 10so ergs. This argument
is fallacious because kinetic energy is not conserved. One must consider
the conservation of linear momentum in each element of solid angle during
spherical expansion of the gas. In the case of a supernova (ejected mass
m<l HD) and an 05 star, the velocities imparted to the gas of mass Mc

(10‘ - 106 Ma) are, respectively,
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/2
v, = @uB) /M

8
(214a)
S
~ 107} ml/Z(_l_O__) km/sec
M
c
and
vg., =E /¢ Mc
s (214b)
~ 1073 (-m— ) km/sec,
M.

where m and Mc are measured in solar masses and E = 105! ergs. Even for
Mc as small as 104 Ma. vs is less or much less than the speed of scund in
the gas. If star formation is an inefficient process, the cause must lie
elsewhere, We shall offer a likely explanation beloy. Now we continue
our discussion of line widths.

Zuckerman and Evans (1974) have advanced an interesting argument
against the collapse of dense clouds. In the presence of a large-scale
contraction, in which velocity increases with distance from the cloud
center, photons emitted from the far side of the cloud (for example, by
CO molecules) are somewhat blue-shifted so that they are not absorbed by
intervening matter. Thus, one ''sees" through the entire cloud. A molecular
species (such as HZCOJ. however, that absorbs radiation emitted by H II
regions found near the cloud center, must be located between the center and
and the nearest edge of the cloud. Since the cloud is collapsing, by
assumption, the absorbing species must be moving away from the observer.
Consegquently, absorption and e-issi;:n lines within a single dense cloud
must exhibit a relative shift in radial velocity. Since such a shift is
usually smaller than one-fourth of the CO line width, Zuckerman and Evans

interpret this as evidence agasinst collapse.
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The altevaative proposed by Zuckerman and Evans to explain the large
line widths in molecular clouds is extremely unattractive. They suggest
that 50% of the mass of a dense cloud exists in the outer ?0% of the radius
without explaining how that much matter can be supported against gravily
at that distance -- whatever happened to Newton's second law? In addition,
they assume that the cloud (M ~ 105 qel is broken up into chunks of about
103 MO and that it is the more or less random motion of these objects that
is responsible for the observed line widths. How these objects avoid one
another remains a mystery. Why they themselves do not collapse, since
they more than satisfy the Bonnor-Ebert critical condition (see eq. [97b]),
is left unanswered by the authors.

An as yet unproposed mechanism may be able to account for the observed
line widths in dense clouds: oscillations of a dense cloud as a whole
about a stable equilibrium st;te such as any one of the states which we
have calculated. We have argued above that a self-adjusting mechanism is
operating in self-gravitating, magnetic clouds that tends to keep a. close
to its initial value, a,. We have also argued that it is reasonable that
ay should be in the range 10 - 30, which implies a very flattened configu-
ration. Such a cloud can undergo oscillations that do not necessarily
push it over the threshhold of gravitational instability. Two normal
modes are obvious.

(i) The cloud contracts both along its major and minor axes
simultaneously; this mode could conceivably lead to collapse.

(ii) The cloud expands along its minor axis (axis of symmetry)
while it contracts in a direction normal to the field, and vice versa.

Such oscillations cannot cause collapse -- recall that one dimensional

compression along field lines due to self-gravity cannot proceed indefinitely.
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The question is whether such oscillations can be maintained for times
exceeding the free-fall time. A plausibility argument indicates that
they can. The only significant damping mechanism is the dissipation of
energy in hydromagnetic shocks. However, since the Mach numbers implied
by observations are in the range 2 - 4, an o, as small as 8 will suffice
to prevent the formation of such shocks. This possible mechanism for
interpreting large line widths in molecular clouds certainly warrants a
more careful future investigation. One could solve an initial value
problem, in which some displacement or velocity is given to the cloud
elements of an equilibrium state. We only remark here that an increase
(temporary or permanent) of the intercloud pressure (say, due to passage
through a spiral density wave) may set a dense cloud into such an oscil-

lation.

4, Why is Star Formation Inefficient?

Mestel (1965) pointed out that a collapsing cloud may fragment be-
cause of flattening -- recall that Strittmatter (1966) demonstrated that
a highly flattened, uniform ellipsoid can collapse normal to the field if
its mass is only about 1/2 that required for the collapse of a spherical,
uniform cloud of the same mass and flux (see § VIC2b). This permits a
cloud and all fragments to remain "strongly magnetic" (in Mestel's words)
throughout the collapse stage. However, stars either have no magnetic
fields at all or very weak fields compared to those which would be implied
if the interstellar field remained frozen in the matter. Therefore, at
some stage of the star formation process, che field must either dissipate
or diffuse through the matter -- the latter being a more likely process
{see § VIB). Mestel (1966) argued that, as a cloud contracts, the nearly

oppositely directed field lines at the equatorial plane give rise to strong
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“pinching" forces that dissipate flux, reconnect field lines, and the
magae-ic field of a clcud is effectively detached from that of the back-
ground medium. We think that pinching forces are peculiar to Mestel's
spherical, non-equilibrium model discussed in § VIC2a. Moreover, this
sequence of events would lead to a rather efficient star formation --
contrary to observations.

There is an alternative possibility. Our equilibrium calculiations
support the idea that the cloud flattens. But, for this very reason, no
pinching forces appeared in the equatorial plane. We think that, after
collagpse sets in and flattening proceeds further, the increasing curvature
of the field lines will stop further lateral contraction of the outlying
{but not the central) layers of a cloud near the equator. Thus, the
field may not detach from the background. The criterion for this to take
place is that the tension of the field lines overwhelm gravity near the
equator. Koughly, the tension is inversely proportional to the thickness

of the cloud, and the gravitational force is inversely proportional to

the second power of the equatorial radius.lo Hence, contraction will
stop in this region if only the ratio riax/znax increases upon contraction.

This is not too stringent a condition. It is conceivable that a substantial
fraction of the cloud mass is "left behind" while the cloud core engages

in the exciting process of star formation.

10. We are assuming here that the cloud is approximated by a thin disk of
high central density and that it contracts through a sequence of quasi-
equilibrium configurations (see § VIII below). Since the intercloud
pressure is fixed and the cloud isothermal and since pressure is
continuous across the cloud surface (see eq. {150];, the gas density
just inside the equator will remain fixed (see eq. [151]). This
situation is substantially different from a contracting thin disk
of uniform density throughout, in which case the gravitational force,
og,, varies as (1/r*__ z ). In the latter, less realistic case,
ond would conclude Pf%e B3%e gravitational forces exceed magnetic
forces, contraction would continue indefinitely. Thi§ erroneous
conclusion is the norm in current thinking.
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VIII. EQUILIBEIUM CALCULATIONS AND STAR FORMATION

Star formation is a process for which, at least most dircctly, a
gravitational instability is responsible, It is impossible to understand
(not merely to simulate) the initiation of this process th;oretically with-
out having some equilibrium state at hand on which one can perform a
stability analysis. One may undertake a multitude of time-dependent
numerical calculations with an infinite variety of initial and boundary
conditions, such as a very large mass within a very small, fixed radius,
that leave no alternative to a cloud (invariably assumed to contain no
magnetic fields) but to collapse (see, for example, review by Larson 1973).
What are often presented as very significant results of such calculations,
for example, a high-density central core and an extended eavelop in
which p = r'z, can in fact be deduced without resorting to lengthy, time-
dependent numericai procedures. A central condensation is an inevitable
consequence of the presence of gravitational forces. Furthermore, the
variation of density as r'2 stems from the existence of a simple simi-
larity solution for the equations of motion (see Larson 1969). As for
the remaining conclusions of such calculations, tihey have to be revised
substantially when a magnetic field is preseat.

The accessible equilibrium states of (a model of) the magnetic
cloud-intercloud system, on both a large and a small scale, are not use-
ful merely for performing stability analyses on them. Since their physical
properties are usually determined by a small numbar of parameters (one in
the large-scale problem of § V, and three in the small-scale problem of
§ VII), it is possible to predict in advance of any numerical time-
dependent calculation whether the initial conditions are such that any

equilibrium states are accessible to the system. In the case of self-
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gravitating clouds, it is certainly true that, if the initial parametcrs
are sgp2cified such that an accessible state is close to a critical one,
transient (such as inertial) effects may lead to collapse. This, neverthe-
less, enhances the usefulness of a knowledge of equilibrium states, rather
than reducing it. Yet, equilibrium states are useful in a much more
practical sense.

First, they seem to exist on both the large and the small scales with
which we concerned ourselves in this work. Second, &s Mestel (1965)
suggested, such a process as the free-fall of an interstellar cloud may
be a rare phenomenon and that the rate of contraction may be limited first
by the presence of magnetic fields, and, at a later stage, pcrhaps by the
rate of diffusion of ions and the field through the neutral matter. In
fact, Mestel (1965) suggests that star formation may proceed in a sequence
of quasi-equilibrium configurations of strongly magnetic clouds, which
flatten and fragment, but never actually free-fall,

Observations, of course, will uitimately decide whether our equili-
brium calculations and their predictions have advanced our understanding
of some of the processes (such as cloud formation, equilibrium, and
stability) that are intimately related to the birth of starz. This is the

way of science.
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TABLE 1

LBL-3602

MAGNETIC FIELD OBTAINED FROM ZEEMAN SPLITTING OF THE 2b-cm LINE

Direction L b vcloud(LSR) Field*
(degrees) (degrees) (km/sec) (ugauss)
Taurus A 185 -6 +10 - 3.5 20.7
+ 4 - 1,5 £ 0.9
Cassiopeia A 112 -2 - 38 +18.0 + 1.9
- 48 +10.8 1,7

Orion A 209 -19 + 7 =50 %15

+ 2 -70 % 20 ()
-1 + 14 +25 + 10

M17 15

*A negative value indicates a direction toward the observer.
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LEGENDS FOR FIGURES

t
A typical perturbation of the field lines of Parker's (1966) stratified

initial state {schematic). The system is periodic in x and extends

to infinity in y. There is reflection symmetry about the x-axis.

Some field lines are left undeformed by the pe turbation. Note that

the deformed field lines curve in an opposiic sense above and below
each undeformed field line.

Two field lines, A and A«AA, started out bring close together in the
stratified initial state. As expansion o cur. at the "wings'" (that

is, at x = X) of a condensation. their peak-to-peak vertical separation,
h, increases. The mean value of the m gnetic fiel!, B, between

1

points a and b variss as h™°, So, tt magnetic-pressure force

lipz/sn], which tends to inflate the field lines further, varies as
-3, However, the tension of the field lines, iBZ(a§/35)|/4n, in

2,

h
the space between a and b varies as h™ '1, where the horizontal
wavelength Ax is fixed and s is a4 unit vector tangent to a field line.
Thus, the field lines will not expand indefinitely. [Note that
|3s/3s| = (radius of curvaturc)'1 = Xx'l.]

Variation of the magnetic f eld with y at the valley (x = 0) and the
wings (x = X) of the condensation of Fig. 2c of Paper 1. The field
of the stratified initial state (in which @ = 1) is also shown for
comparison. The field s normalized to its value on the x-axis in

the initial state. The unit of length is CZ/g.

Variation of the gas density with y at the valley (x = 0) and at the
wings (x = X} of thc condensation of Fig. 2c of Paper I. The density
of the stratified initial state (in which a = 1) is also shown for

comparison. The density is normalized to its value onm the x-axis

in the initial state. The unit of length is Cz/g.
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5. The dependence of the ratio of the magnetic-to-gas pressure on y
at x =0 and x = X in the equilibrium siate of Fig. 2c of Paper I.
Note that a varies considerably with position even though it was
equal to unity -~verywhere in the initial state.

6. Vertical gravitational ficld of the Galaxy (taken from Qort, 1965).

7. The geometry used in § VII. There is axial symmetry about the
z-axis and reflection symmetry about the plane z = 0, Iustead of
the cylindrical courdinates (r, z), it is often convenient to use
the non-orthogonal coordinates (¢, z), where &(r, z) is constant or,
a magnetic surface (see Eq. {125])). For a fired z, we effect the
change .f variables from r to 4% by dr = d&(3r/3?). The cloud houndary
may be specified by the function ch = ch(o).

8a, 8b, 8c. Equilibrium states characterized by the same a; (= 0.5) and
Po (= 0.9) but different Ri (= 2.5, 2.7 and 2.8, respectively) --
see § VIIC for units. In each figure, we label both axes in units
of the initial radius of the cloud, Ri; the scale is the same for both
axes. The cuives bearing arrows represent field lines; each is
labeled by its r-coordinat~ in the initial state (see § VIIB), in
which field lines are equidistant and parallel to the z-axis. The
solid, oblate curves are isodensity contours and they are labeled by
the value of the density in units of the (uniform) density of the
initial state. The dashed curves are contours of equal magnetic-
field strength (“isopedion' contours). They are labeled by the
magnitude of the field in units of the (uniform) field of the initial
state.

From the isodensity and isopedion contours of each figure,

one may estimate a at equilibrium by using the formula ag = a; B:/pf.
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9a, 9b, 9¢. Column (or.'surface) densities for the equilibrium states

10.

11a,

12a,

of figs. 8a, 8b, and 8¢, respectively, for two orientations of the
line of sight. In each figure, of(}) denotes the column density as

& function of distance from the (z-) axis of symmetry (the line of
sight is parallel to the symmetry axis); Uffz) is the column density
as a function ¢¥ 2 (the line of sight is parallel to the equatorial
plane, z = 0}; the column density of the corresponding uniform initial
state is labeled by 9y For ease in comparing an equilibrium state
with the uniform initial state, the horizontal axes in each figure
are labeled in units of the initial radius of the cloud, R, ( =2.5,
2.7, 2.8, respectively, in figs. 9a, 9b, and 9¢). The unit of surface
density is p; /(476 p,)'/7 . see § VIIC. Note that, since the
magnetic field resists lateral compression, of(r) has a smaller

and shallower maximum than af(z). The ratio af(z = 0)/of(r = 0) may
be taken as a measure of the degree of flattening of the cloud.

The function q(¢) for each of the equilibrium states of figs. 8a,

8b, and 8c. The abscissa is labeled in units of the total magnetic
flux (2 » .cl) threading each cloud. Each curve is identified by

the value of the cloud radius in the uniform initial state -- see

§ VIIC for units.

11b, 1lc. Equilibrium states ghlractorized by the same ui (=0.5) and
Ri {=2.4) but different Po (=1.9, 2.9, and 3.9, respectively}). Iso-
density and isopedion contours and field lines are denoted and labeled
as in fig. 8,

12b, 12c. Column densities for the equilibrium states of figs. lla,
11b, and llc, respectively, for the same two orientations nf the

line of sight as in fig. 9. Notation and labeling of curves is as

in fig. 9.
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13. The function q(9) for each of the equilibrium states of figs. 1lla,
11b, and 1lc. Each curve is labeled by the value of Po in the
corresponding state.

14a, 14b. Equilibrium states characterized by the same P°(=0.9) and
Ri(t 2.5) but different a; (=0.2 and 1.0, respectively). Fig. 8a
shows the equilibrium state with a; = 0.5 and the same P° and Ri
as the above two states, Notation and labeling of curves is as
in fig. 8.

15a, 15b, Column densities for the equilibrium states of figs. 14a and
14b, respectively, For further details, see legend of fig. 9.

16. The function q(¢) for each of the equilibrium states of figs. l4a,
8a, and 14b., Each curve is labeled by the value of a, in the
corresponding uniform initial state. Notation is as in fig. 10.

17. Relation between the enhancement of the central magnetic field and
that of thecentral density. Each curve is labeled by the value of
ey and represents many different equilibrium states (see § VIIFla
for details).

18. The external pressure (in units of the initial cloud pressure) plotted
against the enhancement cof the central density for a fixed value
of oy and Ri (see § VIIF1D).

19a, 19b. A critical state and its column densities. The three para-
meters a,, Po' and Ri have the values 1.0, 0.5, and 3.20, respectively.

The properties of this state are discussed in detail in § VIIF2.



-l6'7-

3)\y
2 Py |
J—
Ay
o |
b~ 4 .
X /\
]
>
2 R
\\\“\o
0
~Ax /2 (0] +Ax/2
X-0Xis

XBL752-2248

Fi%’ {



y - OXis

- 168 -

]
X 2X
X - OXis
XBL752-2251



Mognetic field —

1.6

-169 -

XOL752 - 2250



-170 -

0.8

Lo
‘»
c
Q
©
&
O 0.9

0.2

XBL754.2754



-\TL -

-

1 Jxlle IR RATT | lnlnu_l L um}\Lulu

162 3
193 [ N T N N R T S U G |
0] 2 4 6 8 10 12



~\72 -

'O x|o'9 i 1 1 I 1 | S | LU BB LD
]
o _]
;S :

~

= 7]
3 -
o -

ol 11 T U U B N B A

o) 500 1000 1500
y (pc)—

XBL7S52- 2253



-173-

Cloud surfoce

®+dd

Rodial distance (r)

r+dr—=

Intercloud

ZCR“N

2-0Xis
XBL?752-22582

Fi%. 7



174~

\\ A

oL Il il iy
O 02 04 0o 08 10

p, =344 z/R;

B. = 1.65

Fia. 8a



~-175-

S S

4 -~ |.37571

-~ 0980 <

| 2 Nt [.250 =

S0 L )5

0 | 119 1000

- OO AR

Ri s=—==" X" _ 0.750—=

0.6 ==<T__ 090 "2~ 0625

e 0500~

< 0375

O3 ¥y _"-‘;‘.;\:0.250%‘4

69y 1189 L 1.0/25—
Nalyadbd ol

O 02 04 06 08 10
p=7.22 z/Ri

Fig. 8%



~-176-

I
R = 09
06 F---== T 2. 0625
TN\ 30500
358 > W
0.3-946.25\20|6\ 0375
120 h0250—3
AL 0125
O l 1 1' [ l | I 1
O 02 04 O 08 10
z/R.
Pc=14.3 !
Bc=3.78

Fi%. B¢



Column Density

2

O

(o))

W

-177-

r/R;
O 02 04 06 08 10

IIW]T]|

[ T A W

] I

z/R;
Fi%. %

OO 02 04 06 08 10



- 178 -

2

r/F\);

04 06 08 1.0

O O
20

L

15 -
= ]
h -
C —
CGD) -
10 ]

C_ —
5 \crf(r) |
O —
&) 5 —
.\‘\\. O-| -

~ '\ -

\ .\o —

\

\ .
L \\l "l

—

O

O 02 04 06 08 10

z/R;

Fics. b



-179-

r/R.
O 02 04 06 O.8

1.0

32 |

N
AN

|16

Column Density

lJ!JJllLlllLLilJ]lll_llll

Ll 111

02 04 06 08
z/R,

Fi%. 9%

1.0



~180-

lZIIII'IIIll

9://

P
P
é ﬂ

0O I I T T
O 02 04 06 08 10

D/ Dy

Fi%. 10




=181 -

1.5 [T l
E | > |429

\
9|88 - 1286
.25 Suss ;
\_ —7'1 > ||43_:
- 0312 ‘| / .
09\ ) / IQOO—”_:—_—
r ' : f", L/ 710217 . 0857—
R; 06 ’_'-_:_’--.._ ,09807|4—=
' _\ 190 057|"""
—
0.3 207\ 0'429\4
I feoa\ey 298 0.286—1-
e

1.48 ]
AT — 0.143
0 1Y M T L-_‘a
O 02 04 0o 08 10
p=732 /R

B, =2.40

Fics. ila



.o=182-

. O ‘x‘ \
O 02 04 06 08 10
p =132 Z/Ri
B, =3.44
st. b



1.5

.2

Pc=3l.I

-183~

LI IR I N
—1.444

- ~41333—

| le L I I
O 02 04 06 08 1O

z/R;

B, =5.74

Fia. \le



~\84-

r/R;
O 02 04 0O 08 10
2' i l T | I l L I | B
+>_,, : O'f (Z) :
G4 ~
c
S E 4
D | —
C  F-e. ]
g i i
a7 baln) -
O L e \\ _
| \-\\\_\\O-i -
i NS
\\ N
O " ] l 1 | J 1 l \l -‘
O 02 04 06 08 10
z/R;

Fi(a. \2a



N
D

lIll?lllTllTTlFTIITITIIIIIIII

Column Density

-185-

r/Ri
,0_02 04 06 08
T 1

1.0

L

o

Qo

llllelllliLllJl,lllLlll

CE L fdfd

OO 02 04 Oo 0S8
z/R;

Fi%.lzb

.0



221 S

/2
80 90 ¥O0 20 O

Ol

Column Density

— N H O
@) H (00) N (0))
LI B A L O B N O N O R
' -

i _

1 /7

= s D -
- i ,/9 7
L-!/ : -
—/ -
/|

[~ . 7
! ]
1-9

- _
NN NN NN EE NN

80 90 #0 20 O

/4

Ol

-981-~



¢ b4

7°®/d
80 90 ¥0O 20 O

q><IO2

— (AY)
@) $)) @) ($) O
R ll Flll‘[j"lllfrl
[ N\ :
N @' e
_ 'O _
- —
’— ——
- -
NN N S A B BT U S B B A B B B A

~L8\-



- 188 -

| 5_ SN U — 1;“'5'90T_—J—:
T 7’375 Il —
N 7
.2 1250
e 095‘5 L[ (25—
0.9 [ 0906 000~
r BTN O 08757
Ry o3 X_— 0750
0.6 =<7~ 0625
— 090 > =
281~ 9;500~
0.3 -~ 13103757 —]
47 1’826 > }-0.250 7
\
0.125 ==
zan M el
/o 02 04 06 08 10
pc =5.68 | Z/R
B, =2.6|

Fics. 4a



-189-

- - -
R -~

X 4l I

Q A

O 0.2
,cg =2.83
Bc = 1,35

04 06 08 10
z/R;

Fi%. 14 b



|15

Column Density

-190 -

O 02

r/R;
04 06 08 10

_

o1 Pt

_

O

O

2

04 06 08 10
z/R;

ﬂwnw. |Sa



Column Density

-191-

r/R;
|2O 02 04 O6 08 10

I B R N B R B

O

o))

W

O0 02 04 06 08 1o

z/R,;

Fi(h. I5b



~192-

O Lt R I B
O 02 04 O 08 |0
D/D.y

Fi%. {6



-193~

R
Ol

rtrrr

Tl

1

i

L1t t i




-194-

gl Y 'd /2d

-0 Kol |
T T T T T [TTTTT,T 7
I G0='0 )
- b=y _
E .
D111 3 brrs g 1 g N

ol

n°|a:



~195-

|5 ] ! . ﬁﬁ-['l-sool__'__—
. L1375 —
|22 1. 250—=
C N—— 1.125—

I

LA

p.= 1.5
Bc=2.66

)=
O 02 04 06 08 10

Z/F\)i

Fia. 19a



961 4
'/ 2

Column Density

— N W
O 00) (0)] H N
Ornﬁrlrllﬂﬂr]ﬁ[llllllllllﬁl T @
- ' / -
o i 40
AV N
O 10
N D
. : _405
oL 4 1
o /j o~
i Jo
O v o
mb//._q D
I-//. —
EL‘L'_IJIL]LIIJLLILLIJJLILIIJIJIIIIJ bony

-961 -~



-197- LBL-3602

APPENDIX A

METHOD OF SOLUTION

A Triple-Relaxation Iterative Procedure (TRIP)

We write eqs. (177) and (178) formally as
F(A) = Q(r, ¢, ¥; a;,R)) (A1)

and

L(v) = p(2, ¥), (A2)

where ¢(r, 2). = rA(r, z). In eqs. (Al) and (A2), F and L are linear
differential operators, and Q and p are nonlinear algebraic operators.

Both Q and ¢ vanish outside the cloud, whose boundary is defined by

pf2(r, 2), ¥(r, 2)] = P° = a constant. (A3)

The boundary conditions on A and ¢ are specified by eqs. (182a) - (182h).
We note that A{r, z) satisfies Dirichlet boundary conditions on three
sides of the rectangle (the 'large cylinder' of § VIIAS), whose corners
are (0, 0), (0, 2), (R, 2), (R, 0), and Neumann on the fourth. The
potential y(r, z) satisfies Dirichlet conditions on ftwo adjacent sides
and Neumann on the opposite two.

Since each equation is formally similar (but not identical) to
eq. (Cl1} of Appendix C of Paper I, we used a similar procedure to obtain
a8 solution. The complication now is that eqs. (Al) and (A2) must be
solved simultaneously. 1In addition, since neither ¢ nor ¢ are known be-
fore & solution is at hand, the location of the cloud boundary (see eq.
[A3]) cannot be determined umtil the problem is actually solved. It must,
therefore, be treated as s free boundary.

We start with an initial guess Ato). 0(0) and a cloud boundary
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specified by a function Zgg)(¢(0), p(o)) -~ see fig. 7 -~ which does not
(0)

necessarily satisfy condition (A3). Note that o is c¢qual to unity in-
side the cloud and zero outside if the cloud boundary is initially spheri-

cal. We define a sequence of iterates by the recursion relations

L™y = D oM ), (A4)

NCED RN I RPN O NI T30 PN C BN ()

* ’

and
FA™Y) « e, oM, 4D o R (A6)
A g ,(n) | a - B(n)) A£n+l)‘ 05 oM. 1, (A7)
where n = 0, 1, 2, ... The quantities AE"‘I) and ¢£n+l) are provisional

iterates and o(“), e[") are the relaxation parameters at the nth iteration.
Note that the right-hand side of e€q. (A6) contains the latest iterate,
*(n+l)_ We discovered that large oscillations of the cloud boundary during
the first few iterations (aconsequence of a bad initial guess) can be
avoided and convergence be speeded up considerably if we also underrelaxed

the boundary itself by taking

I A I35 M Tl R W 7))

where we have simplified the notation by omitting the arguments; a sub-
script * on ch means that the arguments are the starred quantitiés A
and ¢ in the indicated iteration. The physical meaning of eq. (A8) is

that a slight violation of the conservation of the mass-to-flux ratio is

allowed during the first few iterations. Without eq. (A8), this conservation

law is imposed exactly through eqs. (179) and (180). If, instead of

choosing
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9(0) =1, inside the cloud;
= 0, outside the cloud
and a spherical cloud boundary, we chose an elliptical cloud boundary with
semi-major axis equal to Ri and semi-minor axis Zi< R;, convergence was
further speeded up. In such a case, of course, p(0) must be multiplied by
Ri/Zi in order to maintain a mass-to-flux ratio appropriate to the spheri-
cal reference state.

We say that a solution is reached if the conditions

(n+1) _ ()
1A, At

< e (A9)
A‘(n+l)
(™D )y A1)
—mn - < % !
Ve
and
28D -2 < e (A11)

are satisfied simultaneously. The quantities € and €, are small positive
constants chat can be chosen at will to achieve desired levels of accuracy.
Similarly for €5, €Xcept that it depends on the local mesh size -- we
employ & nonuniform mesh; see below.

As in the problem solved in Paper I, we chose a set of field lines
(15 - 30 within the cloud and at lezst 10 in the intercloud medium),
’{01}, i=1,2, ... 1, and we followed them from iteration to iteration
until they settled down and the solution criterion (A9) - (All) was
satisfied. We usually found solutions within a number of iterations vary-
ing from 3 to about 50 (each taking less than 0.5 seconds of CPU time on the

CDC 7600 computer) , depending on our initial guess and solution criteria.
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However, we often forced the program to continue for over 100 itcrations
in order to determine its asymptotic convergence properties. We determined

that, with €, "€y = 0.01 - 0.02 and cs(;) s (half the local mesh size) and

2
the additional requirement that eqs. (A9) - ({All) be satisfied by several
successive iterations (usually 1C}, a solution was within one percent of
that obtained with much stricter solution rcquirements, which necessitated
a number of iterations usually two or three times larger.

Since any rapid variation of the functions in our equations is
e. pected to occur within the cloud or in its immediate neighborhood, we
employed a nonuniform mesh such that at least 15 mesh points existed with-
in the r-extent and at least 10 within the z-extent of a cloud in the
equilibrium state (not just the initial guess). On the other hand, as
few as 10 mesh points would represent a zegion of the intercloud medium
ten times larger than the initial radius (Ri) of the cloud with practically
the same accuracy as 30 mesh points, because of the smooth and very slow
variation of the various functions there. It was essential, however,
that the transition between the fine mesh and the coarse mesh be smooth.

A smooth transition often made the differcnce between obtaining a solution
within a relatively small number of iterations and not finding a solution
at sll.

The calculation of the right-hand side of eq. (Al) was done in much
the same way as that of the right-hand side of e€q. (Cl) of Paper I. Once
that is done, the right-hand side of eq. (A2) is obtained by simple
sultiplications and exponentiations (see eq. (178]). With Q and ¢ known,
the Poisson equation for ¥ and the Poisson-like equation for A are solved
by a fast direct method developed by Swarztrauber (1972}. Since, in ob-

taining Q we used substantially the same Toutines as in Paper I, the
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accuracy may be cxpected to be comparable with that shown in Table 3,
Paper 1. That cannot, of course, be taken for granted. To test the
accuracy of the present program we used values of Ri small enough for
self-gravity to be unimportant (we avoided large values of P, that would
bring gravitational forces into play by compressing the cloud) and we
compared the numerical solution with one that can be obtained very easily
under these conditions through analytical means. They agreed to within
one percent. This does not necessarily reflect the accuracy of solutions
obtained with a large Ri' or a large Po' Since no exact equilibrium
solutions are known in the general case, we could only use as an indication
of the accuracy of our program the following criteria.

(i} Doubling the number of mesh points in each direction changed
a typical solution by at most one percent.

{(ii) Varying the values of R and 2 (see § VIIAS) by a factor of 2
produced changes of less than one percent in a solution.

(ii1) Forcing the program to continue for oves 100 iterations altered
a solution by at most 4 percent in the value of the central density (it
depends exponentially on ¢; see eq. [128]) while all other functions exhibited
considerably smaller changes.

(iv) A slight change in the values of the relaxation paraweters
changed the number of iterations required to reach a solution, but the
solution itself changed by less than 2 percent. When this test was
performed on a critical state, it sometimes collapsed because of numerical
noise.

The accompanying chart shows the flow of calculations in the pro-
gram. Each "box" contains the function calculated at that point. The

basic process or equation needed for that calculation is indicated by
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information written by the arrows. When the arguments of a function are
r and z, the values of the function are known at the mesh points. When
an argument is ¢, the function is known along field lines. We found it
both expedient and essential to use two interwoven meshes and to switch
back and forth, through interpola*ions, at crucial points in the program.
One mesh (r, z) 1s fixed. The second mesh (¢, z} is defined at cach
iteration by the current position of the ficld lines. In the chart we

use the follwoing abbreviations for economy of space:

FL = field line

INTRPL

interpolate

ClB = (Cloud Boundary

UR = underrelax

Sin = Solution

DERIV = take derivative
INTGR = integrate

rhs = right-hand side.

We note that as long as Q and p are given whatever values they may
inside the cloud and set equal to zero outside, eqs. (Al) and (A2} are
solved over the "large cylinder" without additional regard to the location
of the cloud boundary. Continuity of all physical quantities that must

exhibit such property across the cloud boundary was proven in § VIIA4.

(NOTE: Flow Chart is found on the following page)
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APPENDIX B

Reprint of '"Paper I'" which is referenced in the text.
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ABSTRACT

We present equilibrium states of the interstelfar gas, which has run down the perturbed 1yagnetic field lines
of a stratified, isothermal initial state under the action of a vertical galactic gravitational Reld. The final states
are lower in total energy than the corresponding initial states, Their propertes depead quantitatisely on the
horizontal (but not s0 much on the vertical) wavelength of the initial perturbation. A striking feature of the
final states is that the scale height of the gas increases fdecreases) where the gas density increases fdecreases)
A connection betwy.n initinl and final states is made by conserving the mass-to-flex ratio in eah Qus tube
Thus, although we deternune final equilibrium states by solving a time-independent problein, in g teme-dependent
problem our final states can be reached from the corresponding initiai states through continuous detormations
of the field lines. The tinal states are consistent with observetions i the solar neighborhoud. We trear the
interesting vase of the magnetic pressure being ininially comparable to the pressure of the thermal gas.

We show that the isothermal gas-ficld-gravity system possesses an *“energy integral.” An clfective poteniial
energy is identificd, and un “energy principle™ follows as a corollary. The iterative procedure used in order (o
solve the magnetohy drostatic equations is outlined, and upper timits on the numericai errors are given. We
also extend our formalisni so that it can apply to the case of a general (ruther than an isothermal) equation of

state.

Subject headings: hydromagnetics — instabilitics -— interstellar matter — magnetic fields — plasmas

/ 1. INTRODUCTION

The dimensions of many condensations of the
intcrstellar gas are so large and the condensations
themselves are 5o closely associated with the interstellar
magnetic field that one may conclude that these large-
scale condensations could be produced by very long-
wavelength hydromagnetic disturbances. Parker (1966),
using linear stability analysis, showed that the
interstellar gas, which is partially supported by mag-
netic and cosmic-ray pressures against the Galactic
gravitational field, could be unstable with respect to
deformations of the field lines. Lerche (1967a) deter-
mined a final state for the interstellar gas and field
system, in which Parker's magnetogravitational in-
stability had developed. Since he ignored the pressure
of ’he gas, the final state consisted of infinitesimally
thin sheets of matter that extended perpendicular to
the galactic plane. This state is unstable with respect
to small horizontal displacements of the gas elements
(Lerche 1967b). Parker (19684) found a different
equilibrium state, but at the same time he pointed out
the very special nature of his solu.ion because of a
simplifying mathematical assumption made (see § Ha
below).

In this paper we assume strict flux-freezing and we
derive a general nonlinear, elliptic, second-order,
partial differential equation, a subset of whose solu-
tions properly describes equilibrium states of the
interstellar gas and field system in a galactic gravita-

* This work was supported mainly by the National Science
Foundation under grant GP-36194X, and in pant by the
Lawrence Berkeley Laboratory under the auspices of the U.S.
Atomic Energy Commission.
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tional field {§ I'a). In § [15, by making use of constants
of the motion, we remove an arbitrariness that would
otherwise exist in the source term of this equation,
This allows us 10 make a connection between initial
and final states., even though we solve 4 time-indepen-
dent problem. The boundary conditions and the
assumed initial state are presenud m e UE In § 1V we
obtain and discuss an ‘‘energy mlegral of the iso-
thermal gas-ficld-gravity system and we endeavor to
anticipate what energy changes will take place as the
system makes a transition fron an initial to a final
state. The physics corresponding 1o euch step of the
method of solution is explained in & Va. indications for
the physical stability of the final states are discussed
in § Vb. We present three typical final states in § VI;
important features and observational predictions are
discussed in some detail. In § VII we make a few
concluding remarks and a semiquantitative com-
parison with observations in the solar neighborhond.
Mathematical derivations that would interrupt the
continuity of an argument, together with a description
of our iterative scheme, arc left for the appendices.
The generalization of our formalism, so that it can
apply to equations of state P = P(p), 1s also lef 1nr an

appendix.

1. HYDROSTATIC EQUILIBRIUM INCLUDING
FLUX-FREEZING

a) Reduction to One Equation

Consider a conducting gas of density p and pressure
P in hydrostatic equilibrium in a magnetic field B and
a gravitational field g, derivable from a potential 4.
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Denoting the current density by j, we may write the
magnetohydrostatic force equation as

~VP -, W +jx Bic=0, )

where ¢ iz the speed of light in vacuum. The quantities
B and j are related by Maxwell’s equation

VX B=4nj. )
The equation of state is
P =pC?, o

where C is the isothermal speed of sound in the gas.
In this paper we take C = constant. If a magnetic
vector potential, A, is defined by

B=VxA, 0]
then Maxwell’s equation
VB=0 (5)
is satisfied identically.

Following previous authors, we assume that all
quantities are independent of z (2D geometry) and
that B, = 0. Then B, = +24/éy, B, = —2A4/ox, and
the magnetic vector potential can be written as A =
€ A(x,y). Since B= —e, % VA, it follows that

B8-TA = 0, 50 that A4 is constant on a field line. As-.

suming flux-freezing, one can show
that A is a constant of the motion in the flow associated
with Parker’s instability. Each field line, therefore,
retains its initial value of A.

We define a scalar function of position, g(x, y), by

q = Pexp ($/C%), )
and we write equation (1) in terms of 4 and ¢ as
JjYAjc = exp (—¢/C)Vq. Y]

Decomposing equation (7) in directions parallel and
perpendicular to field lines and recalling that A is
constant on a field line, we can show that

Pexp ($/C?) = ¢ = constant on a field line = g(4);

®
and that
5 €xp (#/C?) = constant on a field line
= % . o

The quantity ¢, being a function of 4 at hydrostatic
equilibrium, expresses the fact that, since magnetic
forces act only perpendicular to the field lines, pressure
gradients exactly balance the gravitational forces along
a field line. The meaning of equation (9) is as follows.
If a magnetic vector potential A*(x, y) [and therefore a
magnetic field 8%(x, y)] is given, and if matter is

@R +Sx8 =0
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distributed among field lines so that the forces parallel
to field lines are in exact balance [i.e., ¢* = g*(A*)],
then we can balance the forces in a direction perpen-
dicular to the ficld lines by calculating a current density
J#* from equation (9). However, B* and j* will not be
consistent with each other unless they have satisfied
equation (2), which may be written in terms of A, with
j eliminated in favor of ¢, as

- —an e AN
Vi = %dAcxp( C”) (10)

So far, equation (10) differs from an equation derived
by Dungey (1953) only in that our ¢ is any gravitational
potential. For example, ¢ can be the gravitational
potential of the Galaxy as a whole, or that of a dense
cloud in the interstellar medium. In the former case,
¥ can be obtained from Schmidt’s (1965) model of the
Galaxy; in the latter case, a Poisson equation for ¢ has
to be considered simultanecusly with equation (10) in
order to obtain a self-consistent solution. In this paper
we take ¢ to be due to the Galaxy as a whole.

Let the gas and ficld system be in some initial state,
in which Parker's (1966) magnetogravitational in-
stability develops with wavelengths A, and A, in the x-
and y-directions, respectively. We take the system to
be periodic in x (along the galactic plane)and we assume
that the pair of (unstable) wavelengths (A,. A,) is the
same everywhere in the Galaxy. Moreover, we assume
that the magnetic field is frozen in the matter. In order

final sigte
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stratified initial state (e = 1) and in a typical final state (that
of fig. 2¢). Both g and A are normalized to their values on the
x-axis in the initial state.
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to find a final equilibrium state for this system we must
solve equation (10); and for this task we need to
calculate g(A). Parker (1968a) assumed that g(A) is
either a linear or a quadratic function of 4, and he
solved the resulting linear equation (10) for the case
in which the gravitational potential ¢ is proportional
to the vertical distance y. We find below that, for the
plane-paraflel initial state proposed by Parker (1966),
the function g varies as an interse power of 4 (see eq.
{15]). In the final states as weil, ¢ varies as some inverse
power of A (see fig. 1). Although g is a function of A
alone at hydrostatic equilibrium, it is not a constant of
the motion. Consequently, we ure not permitted to
calculate (or to specify) g(A4) in some initial state and
then proceed to determine a final state characterized
by the same g(A).

b) Caleulation of the Function g(A)

In gmeral q(A) can be calculated as follows, With
X = A, /2, the mass (§m) in 2 flux tube between field
lines characterized by 4 and 4 + 84 is, by definition,

VX AL 4
sm(A) = f dx f dix, Ap[x, yx, ) . (11)

¥(x,A)

It is natural to consider x and A as the independent
variables. Since the integration over y in equation (11)
is performed keeping x fixed, we may write dr =
dA(@y[4) and effect the change of variables from y
to A. We eliminate p in favor of A4 by using equations
(8) and (3), and we expand the integrand of the
resulting equation in a Taylor series about A4 keeping
only first-order terms. (The neglect of higher-order
terms is justified a posteriori.) We then solve for g(A)
to obtain

q(4) = E—d—'—"/J dx w(,".' A)exp [‘.L(Z:’A)

o 12
The quantity y(x, A) refers to the y-coordinatz of the
field line 4 at x.*

If dm/dA is given, g(4) follows from equation (12)
for any proposed configuration. In particular, both ¢
for the initial and ¢ for the fina! states can be calculated
using the same dmjdA, since conservation of both mass
and flux implies that dm'dA is a constant of the motion.

Note that ¢(A4) depends on the shape of the field
lines. which are originally unknown. Hence, in general,
one must solve equations (10) and (12) simultaneously
for any given dm/dA. The initial staie of the gas and
field system is not known in reality, for it depends on
the mechanism which creaies the magnetic flux. Here
we take it to be the planc-parallel system proposed by
Parker (1966). This defines dmtidA for the tinal state as
well. We emphasize, however, that the only informa-
tion necded in order to determine a final state is the
mass-to-flux ratio in each flux tube. If the distribution

! In Appendix A we generalize the definition of ¢ (eq. [6])
to apply 1o any equation of sate, P = P(p). We also derive
equations, which are generalizations of equations (10) and (12).
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of mass among the various flux tubes is obtained from
observations. we can determine a final equilibrium
state without reference to any particular initial state.

1Il. THE INITIAL STATE: BOUNDARY CONDITIONS

As an initial state we consider the stratified equi-
Jibrium siate of the intersiellar gas and magnetic ficld
in a gravitationa! field g = -e g(ri. where g(31 -
—g(—)) = a positive constant. Foliowing Parker
(1966), we assume that the ratio of the magnetic to gas
pressures, ]

o« = B%8aP (§RY}

is constant in the initial state. For this state we find

Aly) = -2HB(O)exp (- 2H), L))

glAd) = p(OC3[-2HB) A sy
and
dm _2Xp(O}| A4} (16)
d4 = "By | T 2HBG)
where X = A, 2 and # is the combined scale height of

the gas and ficld given by
H=(+a)Cy. (1)

The quantities 8(0) and p0} are, respectively, the
values of B, and p, at p = 0. The subscript J signifies
the initial state. In equation (16) .1 is not subscnipted
because, as explained in § 11b, Jm dA4 is the same
function of A4 in the initial and final states.

The boundury conditions are as fullows. Since the
x-axis is taken to coincide with the galactic plane and
the system is assumed periodic n v, there is reflec-
tion symmetry about both the - and -axes. The
former symmetry implies that the lield ine originally
coinciding with the v-avis remains undeformed. ie.,

Alv p =0 = —2HF(0) = constant . (I8}
Periodicity in v is expressed by
cAx, v)

[giy x=0,tX

= 0. (1)

Boundedness at infinity and conservation of the total
magnetic flux imply

Alx,y) =0, L 2 A
= —4HBO)., y = -7 . (20)

Because of the symmetries, equation (10) may he
solved in the rectungle 0 < x < X, 0 < v < £, In
fact, this semi-infinite rectangle may be replaced by a
finite one without affecting the solution very much.
provided only that the extent of the finite rectangle in
the y-direction is much larger than # (see § VId). So.
we set the upper boundary at y = ¥ » H and we
replace equation (20) by

A(x, ¥Y) = A(Y), Qn
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where A(Y) is the initial value of 4 at y = Y. If one
recalls that the perturbations which Parker (1966,
Appendix I11) showed to be unstable always leave some
field lines of the initial state undeformed, equation (21)
is equivalent to taking the upper boundary at the
pusition of the first undeformed field line of the initial
state.

Before solving equations (10) and (12), we wrote
them in a dimensionless form (see Appendix Cl).
Thus, « of the initial state is the only free parameter
in the equations (see eq. [C1], Appendix C).

IV. ENERGY CONSIDERATIONS
a) An Energy Principle

In Appendix B we show that the magnetohydro-
dynamic equations possess an *‘energy integral,” and
we identify an effective potential energy W of the
isothermal gas-field-gravity system which is given by

W=HW,+W,+ W, 22)
where

W, = j PlnPav, @

W, = ( (B*8m)aV and W, = f pdV . (24), (25)

One can show directly that the force equation (1)
follows from the requirement that the first variation
of W vanish under an arbitrary displacement § of the
plasma elements, provided that (i) mass is conserved ;
(ii) flux is conserved; (iii) the temperature is constant.
In ihe case of a system periodic in one direction (x),
one needs the additional assumption that (iv) no mass
is transferred from one period to the next during the
infinitesimal plasma displacements. This demonstra-
tion rigorously qualifies W as a potential energy and
allows one o study the stability of an equilibrium state
by investigating the sign of the potential energy
associated with small deviations from the assumed
equilibrium.

b) The Meaning of W,

In equation (22), the magmetic energy W, and the
gravitational energy W, are given by familiar expres-
sions. Note, however, that the guantity Pln P has
replaced the usual term P'(y — 1). The meaning of
P In P becomes transparent, if we examine the first
law of thermodynamics (for an ideal gas in the absence
of any fields). This is

dQ = du + Pd(p~?). (26)

The quantities @ and u are, respectively, the heat
supplied to the gas and the internal energy of the gas;
both Q and u are measured in units of energy per unit
mass. For an isothermal process, du vanishes and 4
is an exact differential.

Letting & denote the heat per unit volume supplied to
the gas (1.e., 8 = pQ), we may write equation (26) as

d8 = (8/P — 1)dP. n
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A straightforward integration yiclds ¢ us a function
of P; this js further integrated uver volume to obtain

(;)EJ.MV

i

—’.Pln PV + b | Pdv

]

—W, b | rar, 128)

where b is a constant of integration, The second term
on the right-hand side of equation (28) is the same for
all states, because the 1otal mass is tixed and the gas is
isothermal, Therefore, the heat (33} supplicd ro the
gas in going from one state to another is simply given

Ao = AW 29

Since AW, was derived from the second term on the
righl-handJ side of equation (26), it represents the work
done by the gas against pressure forces 1n making a
transition between two states along an isothermal
path. If AW, > 0, heat is releascd by the gas. Note,
also, that for a reversible isothermal process, the change
in the entropy (denoted by AS) is given by

AS =AOT = -AW, T. (30)

Hence, W, provides a measure of the entropy and it is
equal to the Helmholtz free energy of the gas, to
within an additive constant,

¢) Expected Encrgy Changes

When Parker's instability develops, compression
occurs in some parts of the system and expansion in
others. Consequently, one canaot anticipale what the
net changes in W', and W, will be when a final state is
reached. Compression (expansion) tends to increase
{decrease) W, and W,. This is obvious in the case of
W IUis so for B, as well, because when gas is being
compressed it tends to heat up: tor the temperature
to remain constant (an assumption in our model),
heat has to be released. Typical cooling times are of
the order of 10° years in the interstellar medium and
become shorter as the gas density increases (Spitzer
1968). Since this time is smaller than the ¢-folding time
of the instability (107 years), the gas has cnough time
to cool down.

The gravitational energy ( W,) is expected to decrease,
since gas drains down the perturbed field lines under
the action of the galactic gravitational field. The
*fact” that the expanding field lifts some matter to
higher altitudes is not expected to produce a ner
increase in the gravitational encrgy. for tield lines can
expand only because gas is being *“unloaded™ from
their raised portions.

V. METHOD OF SOLUTION AND PHYSICAL STABILITY
a) The Physics behind the Method of Solution

To obtain a simultaneous solution of the equilibrium
equations (10) and (12) we developed and followed the
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procedure outlined in Appendix C. The physics behind
that itcrative procedure 15 as follows. (i) Guess a set of
field lines (and, therefore. & magnetic field), which
satisfy the periodicity and symmetry conditions dis-
cussed in § 1L, (ii) Distribute the total mass among
the various flux tubes in such a way that the mass-to-
flux ratio in each flux tube is equal to the mass-to-~flux
ratio in the corresponding flux tube of the initial
state. {iii) Allow mass to slide up or down along tield
tines {without transferring any mass from one tube to
another) until pressurc gradicats and gravitational
forces are in exact balunce along ficld lines. (iv) From
the magnetic tield obtained in step (i) and the mass
distribution achieved in step (iv), calculate the current
density necessary to balance all forces in a direction
perpendicular to the field lines. (v) Check whether the
Jjust calculated current density is consisient with the
magnetic field of step (i); if it is noi, use this current
density to calculate a new (**better ™) magnetic tield
and go to step (i) to repeat the process until consistency
is achieved. The introduction of an underrelaxation
paramcter in the iterative scheme provides a measure
of how muck ** better** (or ** worse**1) the magnetic field
of one iteration is, compared with that of the previous
iteration.

b) Stability

The stratified initial Mate is unstable only if the
horizontal and vertical wavelengths of the applied
perturbation simultaneously exceed some critical values
fsee Parker 1966), namely,

Ay > Ay = 4rHQQuw + 1) V2,
and
A > ALA) = AL = pd)yra 3)

The quantities « and 4 are deltined by equations (13)
and (17), respectively, and p = A, A, < . Parker’s
dispersion relation implies that, for a fixed A, > A,
the growth rate of the perturbation increases as A,
(> \,) increases. In addition, for a fixed A, > .\, the
growth rate first increuses and then decreases as A,
increases. The maximum growth ratc is reached when
A, € 2\, and A, = oc. For typical parameters of the
interstellar medium, the inverse of the maximum
growth rate is approximately 107 years. This is smaller
than the time required for one galactic rotation
(approximately 10°® years). .

Starting from the stratified initial state, we applied a
perturbation (in the form of a deformation of the field
lines) characterized by a stable pair of wavelengths
(A, A,). Our iterative scheme always converged to the
initial state, no matter how large the amplitude of the
perturbation was and regardless of the particular
values of A, and A,, as long as they were stable. On the
other hand, our iterative scheme never converged to
the initial state in the case that the perturbation was
characterized by an unstable pair of wavelengths, even
if the amplitude of the perturbation was as small as
1 percent. This is an indication (although not a proof)
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that the iterative scheme cannot converge 1o solutions
representing phvsically unstable states.

For a fixed unstable pair of’ winelengths, we ob-
tained convergence to one and the same solution
(distinct from the initial state) for a wide range of
amplitudes of the initizl perturbation. When perturba-
tions were applied to this solution. the iterative scheme
always converged back to it. This, in conjunction with
the properties of the iterative scheme deseribed in the
preceding paragraph, suggests that our solutions repre-
sent states of the gas-field-gravity svstem which are
physically stable, at least in a local sense The class of
perturbations applied to a final state was such that cach
wavelength of the tinal ste comained an integrat
number of perturbation wavelengths. This prohibits
mass transfer from one period of the equilibrium state
to the next. Of course, for a definitive statement on the
nature of an equilibrium state, one must consider al)
arbitrary perturbations. We make additional comments
on stability in § Vic.

¥). FINAL STATYS

We chose several pairs of unstable wavelengths
(A4, A,) for the perturbation applied to the initial state
(see § 111). and for each such pair we found a final
equilibrium state. Figures 2a, 2». and 2c represent
typical final states, produced by perturbations that had
the same vertical but different horizontal wavelengths.
Ten field lines (volid curresy and three isodensity con-
tours (dashed lincs) are shown. The tield lines are
chosen so that the amount of magnetic lux contained
between any two consecutive ones is constant. Thus,
the spacing between consecutive ficld lines is inversely
proportional to the mean strength «of the magnetic
field in the interval. The ratio a in the initul state (the
only free parameter in the equations) was taken equal
to unity.

u) Dependence on A,

A comparison of figutes 2a, 2b, and 2¢ reveals that.
as the horizontal wavelength increases, so does the
deformation of the field lines. It is the case that the
more deformed the field lines are, the more effective
the gravitational field is in *unloading” the gas from
their inflated portions. Thereforc, the gas density at
the midplane of :he condensation (x = 0, y > OV is
sxpected to increase as A, increases. This is borne out
in figure 3, which exhibits the dependence of the
**emission measures” (EM) on x, in these three final
states.? The horizontal distance .x is measured from the
center of each condensation. In the final state
characterized by X = 15, we note that

EM(x=0)~3EM(x = 15), (A

EM{x=0)=22EM,. (34)

2 We define the emission measure of a final state at a par-

ticular x by EM(x) = g{p,’(x. ¥)dy, and we normalize it to that
E

of the initiaf state, EM, = { p,%(yidy. The subscripts / and i
denote final and initial states, respectively.
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FiG. 3.—The emission measure {(normalized to its value in
the stratified initial state) as a l'uncnon of x in the three final
states of figure 2. The unit of length is C%/g. The number (X)
labeling each curve is equal to half of the horizontal wavelength
of the corresponding final state. Thecurves X = 9and X = 12
could also re; t the normalized column density in the
corresponding final states to within a few percent. Slmnllrly
the curve X = 1S could rep the curresp '3
density 1o within 18%,.

¥
its vialue on the x-avis. The number on euh curve o the scourdinate of that curse in the imtial

In this final state the column deasity of the gas us a
function of x, Ny(x), differs from EM (1) by at most
18 percent; in the other two tical states presented,
EM {x) and N, (v) differ by only a few pereent.

A striking feature of the final states is the fact that,
compared with the initial scale height, the seale herehe
of the gas increases at the position of she magnete feld
“valleys” and decreases at the > wings” of the conden-
sations, where the ficld lines have expandid. At the
midplane of the condensations, moreoser. while the
gas density increases with increasing A, the slde
height of the gas increases as well (compare the lowest
isodensity contours of figs. 2a. 2b. and 2¢). This implies
that the gas density increases not so much because of
compression in the vertical direction. but because of i
very efficient drainage of the gas from the intlated licht
lines. The additional fact that in the " wings™ the gas
density and the scale height decreise as A, increases
precludes the explanation that gas observed at high
altitudes in the Galaxy is gas that has been lifted by
the expanded ficld lines. In fact, if the magnetograv-
itational instability is to be imoked to explain the
high-altitude gas, one should concentrate on the iden-
tification of that gas with the rise of the isodensity con-
;iourzs at the pusition of magnetie ficld *valleys™ (vee

2. 2).
The ratio of the magnetic to gas pressures, an
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Avrna aso 100 Gav Drasiry o5 Tanrs Finar S1a785" at Sour Porxrs
oy, p) ax, »)
{x. n} r » L] & c
0, 0). 1.2 1.4 20 1.0 10 10
© 2. at C.0% oM [ % BEN 11 B 2t .10 42 ¢ 10°*
(I.O).A 0 07 [ 1] to 1o 10
2 oo J0¥ RN 90 « 10 e« 10 I8« j0-" 41 « lo-*

* The column brasded o, &, sad ¢ refer 1o the final vstes of figures Yo, 20, and ¢,

t Recall shat 8124,

mmmm:tqnmmy in atself. constitutes another indi-
cator of the efficiency with which gas drains down tie
inflated fickd lines, and of the dependence of this
cificiency on A,. Table | exhibits the values of wiy, )
(3¢ ey. rlJI) in the fina! states of figures 20, 26, and 2¢
thencelurth refereed to as states @, b, and ¢) a1 aune
Ley points (v, ¢). The gas density is also shown at the
aine peints; it s normalieed o its initial value on the
vinin, 10 addition 10 the information suppled 0
table 1. we remark that toth the gay dennty and the
magnetw lickd are monotonically decreasing functions
of § ot a fined x. At the two values of y used n table 1,
the nermalized density in 1he imtial stale is a0y = 1.0
and p(22) = 1.8 x 10 . The linal density along the
a-anis is always uniform (and equal to unity to within
a few pervent) because of the requiremcni that there be
reflection symmetry about the a-axis (see eq. [IK)). No
pressure gradients can be sustained along the v-ans,
bevaus the xcomponent i the gravitational fickd is
assumed 1o vanish, and because magnetic forves do
not act along fichi haes.

The factthatat v -~ Oalpha devreases inonotonically
as v creases, and the fact that at x = Y alpha in-
creaws monotonically with 1, are different expressions
of the same conclusion sated above, namely: the
fcrease of the gas demsitd in the magnetic peld ™ valles™
in due primandy to officicnt drainage along ficld lines,
ruther than to compression perpendicular fo the galactic
plane. This drainage is mare cllicient the larger A, is.
In addition, the computed low densities at v = X and
large ', in conjunction with the large values of « in
the same region, indicate that (he magnetic tickd is
nearhy o vacuum field at the raised portions of the
upper field lines.

The absolute **horizontal width** of the condensa-
tion (denoted by D and defined as the distance from
the center of the condensation to the point x, al which
the nosmalized emission measure becomes equal to
unity} shows an increase with increasing A, (see fig. 3).
However, the ratio DA, decreases as A, increases; it
18 equil to 0.47 in state @ und drops to 0.38 in state c.
We shiould bear in mind that the above definition of D
uses as a reference the stratified initind state, which, as
cmphusized in § 115, is needed only to provide a mass-
w-flux ratio in each Aux tube of the system. In external
galaxies scen face-on, one can ohserve the contrast
betwcen regions of high and low gas density. Thus, the
rele vant quantity isthe ratio EM (1 = ) EM (2 = X))

20 i selferont in sach Atatc; it incieawes as w< g from date @ 1o Mate ¢,

for cach of the states of figure 3. Thus contzast becomes
more proanounced as A, icreases.

h) Encrgy Chonger

In raking & transition from an wmstial to a coree-
sponding final state, the system alters its magnctic and
gravitational energics. (n addition, while remumng
isothermal. the gas docs work (positive or negative)
against pressure forces, thus releasing ur absorhing
heat (see cq. ’_29)) The net reduction of cach of the
three forms of energy is shown in ushle 2 in the case
of the final states a. b, and ¢. In cach state all numbers
are normalized to the internal cneryy U of the gus
which is given by

= l 1Pay . (1%

The quantity L' is constant because of the sothermal
equistion of state and because of conservation of total
mass.

Starting with the heat term. we note that more heat
is given off as A, increases. Since heat 1s released by
compressed gas and absorbed by cxpanded gus, the
amoumt of heat released may be laken as a rough
measure of the net compression suffered by the gas
Thus, the entries in the second column of table 2
confirin that the larger A, is. the more efficiently the
gas is compressed,

In spite of the large expansion suffered by field fines
in the “wings " of cach condensation, the seduction in
magnetic energy is small compared with that of the
other energy terms. The relatively weuh compression
of the magnetic field [that takes place primarily #long

TABLE 2
EnirGy RepueTion For Turee Final STaTes

ENERGY Ru t u\w'

Heat M, sravitational
Finay S1aTe (x10%) {x Io”) (x 109
N 23 0.00 237
& 0. 5.50
thy 207 129

® In each state, the encrgy released has been aormalized to
the internal energy of the gas, (3,2) § Pdi .
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the midplane (x = 0, ) ~ 0)] almost cancels the effect
of the large expansion in the “wings.” This is not
surprising. since the ficld lines that suffer the greatest
expansion are those al intermediate and high altitudes,
where (he magnetic encrgy content is smal! in the first
place. The increase in the amount of magnetic energy
released at larger A, may be due to the availability of a
larger volume, in which ticld lines can expand.

e gravitational encrgy behaves as anticipated in
§ 1Ve. It is interesting to note that the heat released
heeps pace with the decrease in gravitational energy.
siwe both quantities reflect the accumulation of gas
in magnetic field “ valleys.”

¢) Which Is The Final State ?

Over horizontal distances that are larger than twice
the critical wavelength \,. given by equation (1), the
possibility of two **final*’ states (one having a wave-
length equal to twice that of the other) arises. Merely
on encrgy considerations, the state with the longer
wavelength is a more likely final state, since it is lower
in total energy. Wechose ¥ = 25and X = 18, and we
applied a perturbation to the stratified initial state that
had a wavelength A, — 3 (sather than the usual A, =
2X).? Furthermore, we imposed no condition whatso-
everat x = X/2. The final siate obtained in this manner
exhibited the characteristic double *"hump.” as ex-
pected. Its field lines ditfered from those of figure 2a
by less than three parts in 1000 at all points. When
perturbations were applied to this state, the iterative
scheme converged back to it. Only when the amplitude
of the **perturbation®" was so large that it erased the
double **hump™ did the iterative scheme pick out the
state that has twice as large a horizontal wavelength,
This leads us to believe that both states represent local
potential wells and that it takes a finite amount of
cnergy to push the sysiem out of the state with the
shorter wavelength and down the potential hill into
the lower energy state. characterized by the longer
wavelength. If perturbations that can provide the neces-
sary energy arc available, the interstellar gas conden-
sations discussed so far may tend to coalesce into
larger (and denser) condensations, separated by a larger
mean distance.

Suppose, now, that a disturbance in the initial state
consists of a superposition of many wavelengths.
Under these conditions, which final state will be
reached? A perturbation with initial growth rate »
grows in time as exp (n7). Because of the exponential
dependence on a, the amplitudes of two perturbations,
which differ in their growth rates by a small amount,
will be very different after some time has clapsed. So,
given a spectrum of wavelengths for the initial pertur-
bation, that final state is more likely to be reached
that has a wavelength corresponding to the maximum
growth rate. In all cases presented, we have fixed

Y = 25. Since we also took « = |, this implies that

3 Whenever numbers are given, the unit of len.gth is C3/g,
where C is the isothcrmal speed of sound in the gas and g is
the magnitude of the vertical gravitational field of the Galaxy
(assumed to be a constant; see § 111).
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the maximum growth rate occurs at approximately
X = 12.4. The solution of figure 2b is close to this final
state.

In summary. then, the factors deciding which final
state will be reached are as follows. (i) 1f the initial
perturbation is monochromatic. its wavelength alone
deterimines the tinal state. (i) It i spectrum of »ave-
lengths is initially available, that final state will be
reached which corresponds 10 the wavelength of
maximum relative growth rate. () If disturbances
continue to be present during the transition of the
system, the amplitudes of these disturbances may also
play a role in determining the tinad state. A definitive
statement must await exact caleulations,

d) Dependence on A,

Unlike the horizontal wavelength, the vertical wave-
length does not affect a solution very much, provided
only that A, > H. For a fixed (unstiable) A, we found
that, by changing A, by almost a factor of 2, a typical
solution changed by much less than | percent at small
V's, and by a few percent at intermediate 35, One could
anticipate this insensitive dependence of a solution on
A,. since more than 90 percent of the energy (per unit
length along x) of the initial state resides under the
altitude y ~ 7, and more than 50 percent of the energy
is under - > 2.5. We further obscrved thut the shape
of the field lines at very large +'s depends on A, if
A, ~ A, (> H)Y In the case that &, > A, ~ A, the
effect becomes negligible altogether.

Vil. CONCLUDING REMARKS AND
COMPARISON WITH OBSERVATIONS

We have determined final equitibrium states for a
model of the interstellar gas and ticld in the galactic
gravitational ticld. Our solutions represent farge-seale
isothermal condensations of the interstellar gas in
magnetic-field **valleys.'” They should not be identiticd
with **standard clouds,” which could be preduced by
the magnetogravitational instability only if « » |
(corresponding to a cold gas and u critical wavelength
of the instability which is only a fraction of the scule
height). We find thut the boundaries of the larpe-scale
isothermal condensations are fairly diffuse. This s to
be expected, since we have not allowed any * phuse
transitions’" to occur in the manier described by
Field, Goldsmith, and Habing (1969). The thermal
instability (Field 1965), which we have not considered
here, could produce only small-scale less than 1 po)
structure within the large-scale condensations, which
the magnetogravitational instability initiates.

A distinctive feature of the final states is that con-
densation occurs not so much because of compression
in the direction of g, as because of drainage of the gaus
along field lines, especially at intermediate and high
altitudes. As a consequence, at the midplane of the
condensation, the scale height of the gus in a final

¢ Although this is insignificant for the problem at hand
because of the energy argument just cited, the shape of field
lines at high altitudes may be important in the comtext of
cosmic-ray propagation,
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state is larger (by a factor of ~2)than the scale-height
in the corresponding stratified initial state; at the
“wings" of the condensation the opposite is true. Thus,
the observed gas at high galactic altitudes cannot be
interpreted as gas lificd by expanding field tines, If at
all, it should be identified with the rise of the isodensity
contours in magnetic field *valleys.”” As a corollary, it
is unlikely that any substantial material galactic halo
can form by inflated field hnes. A radio halo could
indeed form, however, by cosmic rays and expanding
field lines in the manner described by Parker (19685).

To compare with observations one needs 10 know
the characteristic wavelength of a typical final state.
A lower limit 1o this wavelength is, of course, the
critical wavelength for the instability, .\, (sce eq. (31]).
Care should be taken, however, not to identify £, in
the expression for .\, with the observed scale height
of the gas today. The observed scale height is repre-
sentative of the finat state, rather than the initiai one,
since the growth-time of the instability is only 107
years. Realizing that « is a point function and that it
cannot therefore be obtained by averaging either B or
p over large distances, in order to make a semi-
quantitative comparison with observations we assume
that o ~ 1. Then, since the obscrved scale height is of
the order of 10? pc, we expect gas condensations pro-
duced by Parker's instability to be separated by at least
4 few (3 or 4) hundred parsecs. Unless « is unexpectedly
large, gas condensations separated by smaller distances
than this cannot be attributed to this instability. Be-
cause Parker’s instability is associated with very long
wavelengths, final condensations involving up to
10° M, could be produced. (Note that a gas element
travels only a fraction of the horizontal wavelength in
going from an initial to a final state.) Also, because of
the large scales that could be involved (up to a few
kiloparsecs), we view this instability as providing the
stage on which small-scale processes in the interstellar
medium (e.g., dark cloud formation and cloud col-
lapse, star formation and supernova explosions etc.)
act out their individual roles.

Both the nicely displayed, recent 21-cm observations
by Heiles and Jenkins (1973), as well as the compilation
of 21-cm observations by Fejes and Wesselius (1973),
when combined with the starlight polarization meas-
urements by Mathewson and Ford (1970), reveal an
intimate association between the interstellar gas and
the interstellar magnetic field. In fact, enormous gas
condensations coincide with magnetic-field ** valleys.”
At the position of the field “valleys™ the gas extends
high above the plane and it does so in directions
parallel to the magnetic field. The most prominent
condensation is centered at about / = 40°; it is a few
tens of degrees wide and extends above {and below)
the plane by at least as much as 60°. Field lines emanat-
ing from this condensation form arches above the
Sun’s location and return to the plane in the general
direction / = 250°, where another condensation is
located. The *“‘edge” of the condensation at / =~ 40°
may be as close as 100 pc, and that at / = 250" as close
as 200 pc. However, the starlight-polarization maps of
Mathewson and Ford show that most of the contribu-
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tion 10 polarization comes from the distance range 2060
400 pc in cach of these directions. Moreover, contr:.
bution to polarization 1s also made by gas extenduiy
out 10 about 600 pe in cach direction. Theretore. the
scparation between the “centers ™ of the twe conden-
sations may be as large as 600 pe. Not only i the
separation within the range of unstable wavelengths
for the magnetograsitational instability, but 1 may
also be close 10 the wasclength corresponding to the
maximum growth rate.

Below the galactic plane, two prominent condeusi-
tions that are centered at [/ >~ 40 and /[~ 10,
respectively, are simifar in size and in separition 10
the ones just discussed. They are located in magnetic
field **valleys ™ and they arc joined by field lines tha
arch high below the plane. They tao miy constitute
cevidence that the magnetogravitational instability has
occurred in the solar neighborhood.

If the Jeans instability were responsible for the
formation of these condensations. then (i) they would
be more centrally condensed, and (ii} the long dimen-
sion of cach condensation would certainly nor be along
the magnetic field. When self-gravitation becomes
important, three-dimensional calculations (that incor-
poraie the assumption of flux-freezing rigorously)
show that the equilibrium states exhibit flattening along
the magneiic fieid (Mouschovias 1974).

The observed symmetry of high- and low-density
regions about the galactic planc is understood in the
context of the magnetogravitaticnal instability. What-
ever the mechanism that triggers the instability (spiral
density shock waves?), it certainly must act coherently
over a region larger than the critical wavelength for
the onset of the instability (several hundred parsecs).
Since the interstellar gas forms a thin disk having
thickness of a few hundred parsecs 7oday, the perturba-
tion that triggers the instability car. influence the gas
above and below the galactic plane in a similar manner.
Therefore, if the initial distribution of the gas was
symmetric about the plane, the final state is expected
to retain this symmetry. Smaller-scale deviations from
this symmetry may be attributed to local phenomena
(e.g., depletion of gas by star formatio, ionization by
nea;by stars, sweeping of gas by supernova shocks,
etc.).

Observations of the motion of the interstellar gas in
the solar neighborhood show a flow pattern in which
gas {alls down toward the galactic plane and flows out
in the general direction of the galactic center and that
of the anticenter (Erickson, Heifer, and Tate! 1959;
Helfer 1959; Weaver 1973). The velocities observed
are a few kilometers per second. This particular flow
pattern is consistent with a picture in which gas is still
sliding down the expanding field lines joining the two
condensations referred to above, which are located at
! ~ 40° and ! ~ 250°.

Observations of external galaxies provide further
evidence for the magnetogravitational instability. This
{and some consequences of the assumption that the
instability is triggered by a spiral density shock wave)
will be discussed in another publication (Mouschovias,
Shu, and Woodward 1974).
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It is with much appreciation that | recall the problem-
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sor George B. Field. | am also thankful to Dr. Paul
Concus for his advice on numerical maiters in general,
and Jdor his help in esumating the asymptotic con-
vergence-rate of the iterative scheme, in particular.
Professor Frank H. Shu's criticism is much appre-
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cated. Without the generosity of the Theoretical
Physios Group of the Lawrence Berheles 1aboraton
who provuded mie with ime on the excellent § 8t
computing facihuies, this project wonld oot hase been
completed. 1 am alsoindebted to the Mathenatics and
Computing Group of LBL for their support.

APPENIDIX A
GENERALIZATION OF THE FUNCTION ¢ TO EQUATIONS OF STATE £ - "y

Even if the isothermal equation of state 1s replaced
by a general equation of state

P =Py, (Al)

a connection between initial and final states may still
be made. For this purpose we define g(x. ) by

q=cxp(f#+qb)- {A2)

Following the same procedure that we did in § 11,
we can still show 1hat

= g(A) {Al3)

and that equations (10) and (12) now become,
respectively,

dingq(A4)

V34 = - 4np 7A

(Ad)

and

aay = o [T ax AN g %] aas)

In equation (A4} piseliminated by using equation (A 2y,
ie.,

(At

vl
poaen| R - q(n‘j“,,l

In practive. the derisatises appearing in the right-hand
sides of equations (ASE and ¢ A6 are calculated o o
straightforward fashion by using the cham rule We
obtain

dy , dy dd

dP ~ dAdP
g :_‘/!r,\ Clongydy
TdaVix i O ,,.Nd,.' (AT)

und

b fedix ulu;Nul” b (A%)

(77’— X p yop (//;

The price that we have paid. in order to replace the
isothermal equation of state with the general equation
of state (A1), is that the iterative procedure over the
single function 4 must now be repliced by an iterative
procedure over all three functions 4, ¢. and p. The
solution of this general problem s feasible.

APPENDIX B
AN “ENERGY INTEGRAL"™ FOR AN ISOTHERMAL PLASMA

Bernstein ez al. (1958) state that the equations of
magne* “*hydrodynamics

dv

= - P W+ d xB (B1)

op
'—t + v'(PU) =0 ’ (B2)
E+ (@)X B=0, (B3)
SR =0, 84)

{1 eB

vxE:_Z'_ﬁT' (BS)
VX B =(4r))j, (B6)

v.8=0, (87)

possess the energy integral

2
fdl’(ipr’ + % + pd + ):—}_’—l) ~ aconstant , (B8)
where the integration is extended over all space. The
operators ¢ ¢ f and d/dr denote Fulerian and comoving
time-derivatives, respectively.

Here we show that, even in the case that the plasma
is isothermal Gi.e.. y = 1), an “energy integrai™ still
exists; it is identical with that of equation { BE), except
for the fact that the term Py - 1) is replaced by
P In P. We proceed in the usual manner to take the dot
product of both sides of equation (B!) with v then,
by using equations (B2)-(B7), we write each term as
follows:

: 2;
vixg= v (ZEx8)-L(Z). @
4 AL
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a9 = —Detpde) - L1 (B10)

Also,
—9UP = -V (Pr) + PV.-». (Bl1)

But. by judiciously adding and subtracting the quan-
uty Pln PU.r, we can show that the last term in
cquation {B11) may be writien as

PO = - lai.,""' P)+ Ve Pin r.)] . (BI2)
Collecting all terms, we obtain
3
:—I(gpr’ + :—' +pb+ rmr)

+ V-'ipv’v + {;E:t B+ oo+ Pln(P/c)v] =0,
(B13)

In equation (B13), e is the natural-logarithm base. If
the plasma exiends over all space, being periodic in x
(with a wavelength A,) and symmetric about the x-axis,
we may integrate equation (B13) over one period of the
system in x, and over the upper half-plane in y.® The

* Asin the main text, the geometry is taken to be two-dimen-
sional, although this is not necessary for this argument.

Bit
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divergence term yields a surface integral with all the
terms vanishing, if there is no mass transfer from one
period to the next, or across the x-axis, and if either
the magnetic field or the velocity vanishes at y = aoc,
Formally these conditions are

(y =0
A =0 n{ {:1E}]
(yx= -+ X3
and either
Bx,y=a)=0, or #x,y=7)=0. (BiS)

The unit normal to the **surfacy " of & period 15 denoted
by 4, and X is equal to A,/C. Thus, the result of the
integration is

de(}po‘ + 5 + ¥+ PInP) = aconstam . (Bl6)

The first term in this integral is the kinetic encrgy of
the fluid. The sum of the other three terms acts as an
effective potential energy of the isothermal plasma.
This point and the meaning of P In P are discussed in
the main text (see §IV). Here we only remark that
Pln P is not the internal energy density of the fAuid:
the latter is always equal to 322

APPENDIX C
METHOD OF SOLUTION

I. THE DIMENSIONLESS PROBLEM

We measure the magnetic vector potential and the
gas density in units of their initial values on the x-axis,
i.e.,, -2HB(0) and p(0), respectively. The unit of
length is taken as C3/g, and the unit of time is fixed
by choosing the unit of velocity as C, the isothermal
speed of sound in the gas. With the gravitationat field
chosen as in § 111, we may write the dimensionless form
of equation (10) as

ViAx, y) = Ay, 4; 0}, €n
where

1 dog(A .
Py A;0) = —m%exp(—y). (€2)

The parameter « is characteristic of the initial state (see
eq. [13]). Similarly, equation (12) becomes

X )
a) = 3 35/ ae LB exp -yt 1. (€3)

where

dm
1= —4X() + )4, (o)}

and X is defined by X = A,/2. The dimensionless form
of the boundary conditions is

Alx,y = 0) (CSH

fAlx. ) -0, (C6)
ox x=0.4+ X
and
Alx, 3} =0, p =4
=2, y= -, «h

The approximate boundary condition that replaces
equation (C7) is
Alx, ¥Y) = A(Y), (&}
with A,(y) given by
Ay = exp{-y/Qe + 2)}. (8%

Il. OUTLINE OF THE NUMERICAL SCHEME

fn equation {C1) V* is a linear differential operator
and Q@ is a nonlinear algebraic operator. We solved
equation (C1) numerically by an underrelaxation
iterative procedure. The premise was that, if we can
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valculate @ as a function of v and y (rather than A
and y), we could gasiiy solve the resulting Poisson
equation by any one of the many available fust tech-
niues (see Dorr 1970). We know @ as a tunction of
Aund 1, however, only if' a solution Ay, ¥) is at hand;
henee the necessity of an iterative scheme.

Starting from an instial guess 470y, 1), we define a
sequence of iterates by the recursion relations

Sy V= @y, A" edy, n=0,1,2,..., (Cl0)
g A o+ (1 - ALY LR
0 <. (CID)

The quantity 4,7 ! is a provisional iterate and &
is the relaxation parameter at the nth iteration. We say
that a solution is reached it the following condition is
satisfied at all points ¢4 1):

’A.m-‘l- A <e.

A W

(C12)

In equation (C12), absolute values are denoted by the
vertical bars. {Recall that the dimensionless A is alwiys
positive.) The quantity ¢ is a small positive number
and can be chosen at will to achieve desired levels of
accuracy.

We chose some field lines of the initial state (the
number varied from 65 to 129), we introduced pertur-
bations most often huving the form

3A(x, y) = —A (P sin (v Y)cos(nx/X), (C1I)

where u is a fixed positive number less than unity, and
we followed these field lines from iteration to iteration
until they settied down. Although we found solutions
(to within ! or 27,) in a number of iterations varying
from 6 1o 22, we forced the program to continue for as
many as 97 iterations in order to make a detailed error
anadysis, Thus, we computed the asymptotic converg-
ence rate and demonstrated that, at any one interior
point, our solutions are accurate to within 0.5 percent,

In more detail, the steps involved in the iterative
schem e are the following.

iV Define a uniform mesh over the region of interest
kaving J points in the y-direction and K points in the
x-direction:

==y, j=1L2...,J; (Cl4)
xe=(k~-DAx, k=12,....,K; (CIS)

where Ay = Y/(J — 1) and Ax = X/(K — 1). [Note
that, a mesh having been defined, all functions of one
(iwo) variables become one- (two-) dimensional
arrays.]

ii) Choose a set of field lines of the initial state
which we shall follow. Let this set be {4}, i =1,
iii) Guess an A“'(x, »).

iv) For each x, interpolate to find WA, x), i = |,
2,.. , 1. That is, obtain y as a function of x along each
field line chosen in step (ii).
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v Foreach vdifferennate v 1o vvwihrespect to A
to oblam v et

vi) Perform the antegration e equation (4 3 for
¢ach A,.

vin) Obtain gt from  cquatbien (U3 ~smee
dmiA) A1 always given by cyuation (L4

vii) Partorm the diiferentiation with respect o o
find A(A,) = dyi 4} A

in} Since 4,0 15 known sdong the ticld hines, whose
position was determined m step ), mterpolate 1
obtain /1 ut the mesh posts. This interpolation o done,
for each v, by wsing ¥4, v)as old absorssae and 1 i
new abscissie: the subscripts + and / ospan iher
respeclive ranges.

x) With the right-hand side known as a function of
xand v, the Poison equation (C1 s solved to nind
AV .

) IF 4 and 47 sausfy the cnitenion gisen by
equation (C12). then 47 15 g solution 1 they do no,
underrelax A4 as in equation 1C 11 and go back to step
{iv) to repeat the process.

Numerical integrations, ditfferentiations, and mter-
polations are performed so many tunes in the program
that, although the routines performmg cisch vperation
are very accurate, their combined effect in the caleula-
tion of the right-hand side of equition (C1) cannot be
predicted._To study this effect we searched for a
function A(x. ¥). which would {1} correspond to field
lines having the desired wavy shape; (i satisty the
appropriate boundary conditions: and i allow us
to caiculate the right-haad side of cquanon (1)
analytically! If such an A4(x. 1) 15 hnown, then the
calcutated Q1. A; @) can be vompared with the ¢
computed by the program and the net pumericad
errors be determined. Such an A4 1 vbtained by solving
the quadratic

exp[~v Qe+ 2] =( -~ AnT - AIwv) + q,
(Cle)

where

wix) = xcos (mxiX), el <), (CI7)
and A, is the value of 4 in the initial state at v - Y,

It is remarkable that we found that the maximum
error in the computation of dyt 4) /4 vceurs at the
upper boundary (where all physical quantities are very

TABLE 3
Maxivum Compt1ationar ERRORS
Function Maximum Error () Lovation

0.320 pe 2k -2
0.060 P 0S R 1<
0.048 =

glA) 0.445 1= 65

dyl4)id4. . 0.770 =64

dylAlx, ) d1 .. 091 j=06hk =45

® The function /(A) is defined as the integral in the denom-
inator of egaation (C3).
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small compared with their values on the x-axis) and is
equal 10 091 percent. Table I exhibits the maximum
errars in the computation of the sarious guastities and
the puoints at which these errors occur. The mesh was
uniform in each dircction ; the number of mesh points
in the y-dircction was 65, and that in the -direction
was 63. This is the smallest number of mesh points
used to obtain any onc of our solutions. Thus, the

Bi3
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ercors given in table 3 are the largest that we may
expect. The imdices j and 4 denote mesh pomes m the
yo and v-directions, respeetively owee eghe [CT4] and
[C15)). The indes ¢ denotes field hnes. the Towest fickd
line having i = 1 and the one a1 1 Yhaving 6%
Note that the mavimum errors oceur at the hboundarees
In fact, the errors at intenior poinis are much less than
those given in table 3.
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