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FORWARD 

This work concerns itself with some basic physical processes 
pertinent to the interstellar medium. Its assumptions are' guided by 
cbservational evidence to the extent possible. If a simplifying assumption 
becomes necessary, it is adopted only if a more realistic one is not 
expected to alter the qualitative nature of our conclusions. 

The internal structure and, in particular, the relative length of 
the sections of this dissertation is determined by three objectives. 

First, the work Mist be sufficiently self-contained. This is main­
ly for the benefit of a student of physics beginning his research on large-
scale interstellar phenomena involving the magnetic field. It accounts 
for the relatively lengthy but critical review of the literature in § I 
through IV and in i VI. 

Second, all arguments presented must be related to the central 
theme (namely, the formation, equilibrium, and stability of interstellar 
clouds), which in turn bears on the process of star formation. It is 
hoped that this will render the manuscript a coherent exposition. 

Finally, enough original results must be explained clearly to 
provide stimulation for the specialist (theorist and observer) for further 
study of the subject matter (! V and S VII). A special effort is made to 
interpret physically all formalism, assumptions, and conclusions. 
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Static Equilibria of the Interstellar Gas 
in the Presence of Magnetic and Gravitational Fields 

by 

Teleaachos Charalambous Mouschovias 

ABSTRACT 

No exact self-consistent equ i l ib r i a calculations exist for 

(any model of) the system of the Interstellar gas and the frosen-

ln Magnetic field. On a large scale (~ 1 kpc) this system 1* af­

fected by the vertical galactic gravitational field, while on a 

• • t i l scale (ml pc) the self-gravitation of the gas comes Into 

play and is responsible for the collapse of some clouds to form 

stars. We determine accessible equilibrium states for the gas-

field systea on both of these scales. In each case our main con­

clusions are aiMsarlsed as follows. 

(1) Final equilibrium states of the gas-field syster in the ga­

lactic gravitational field can be reached after a magnetic Ray-

lelgh-Taylor instability developa. We show that the tension of 

the field lines Mill eventually stop their Inflation. Evan 

though we solve a tlm-independent problem, we connect a final 

state with the stratified Initial equilibrium state by conserv­

ing the mass-to-flux ratio in each flux tube of the system. A 

transition in time can therefore be made between them through 

continuous deformations of the field lines. 

Pinal states sre lower in total energy than corresponding 

init ial states. Their properties depend quantitatively on the 

Present address: Department of Astrophysical, Princeton University, 
Princeton, New Jersey 085l<0. 
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horirontal (but not so much on the vertical) wavelength of the 
initial perturbation. A striking feature of the final states Is 
that the scale height of the gas increases (decreases) where the 
gas density increases (decreases). The characteristics of our 
final states are in agreement with observations in both our Gala. 
xy and in M 81. 
(ii) We determine equilibrium states for massive Interstellar 
clouds, whose electical conductivity is extremely high. Self. 
gravity and the pressure of the hot and tenuous intercloud medi­
um bind them, in general, against the disruptive effects of their 
Internal pressure and magnetic stresses. The surface of a cloud 
is a free boundary determined by the requirement that there exist 
pressure balance across it. We find that a cloud becomes oblate 
with its major axis normal to the field lines, for a fixed mass 
(external pressure) the flattening increases as either the mag­
netic field or the external pressure (mass) Increases. For a 
given magnetic flux threading the cloud and a given mass (exter­
nal pressure), no equilibrium solutions exist if the external 
pressure (mass) exceeds some critical value. For example, for a 
background field of 3.51* nicrogauss and an intercloud pressure of 
1800 k deg/cm , an H I cloud of temperature equal to 50 K will 
collapse if its mass exceeds about 1320 solar masses. In this 
critical state, the surface density through the center of the 

-3 -3 2 
cloud is in the range 10.6 * 10 - 23*5 * 10 grams/cm de­
pending on the orientation of the line of sight. 

We determine the exponent K in the relation B c < ^ 

between the magnetic field and the gas density at the cloud cen-
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ter. It depends on the ratio of the magnetic and gas pressures 
in the cloud. It is certainly smaller than 2/3 (Isotropic con. 
traction) and it decreases further the stronger the magnetic 
field. It is likely to be less than 1/2 for nuch of the life time 
of a cloud. 

An alternative mechanism capable of explaining large lire 
Mldths in molecular clouds consists of oscillations of a (mag­
netic) cloud as a whole about equilibrium states such as the 
ones which we have calculated. 

Wis also discus* problems related to the formation of Inter­
stellar clouds as well us star foraatlon. Most significantly, we 
suggest that the observed Inefficiency of the star formation 
process cannot be attributed to the birth of *r. 0 ?, or an earli­
er type star within a collapsing cloud, but can naturally t ex­
plained by magnetic effacts in a contracting and, therefore, 
nonuniform cloud. 

( 

S (Signature) 
Professor George B. Field 
Dissertation Chairman 
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of star formation must provide, it is nevertheless a fundamental set insofar 

as it aims at an understanding of the basic mechanical forces that 

govern the behavior of the interstellar medium as it relates to star 

formation. 

The interstellar medium is a complex system far from thermodynamic 

equilibrium. In it thermal, turbulent and ordered motions, radiation, 

cosmic rays, magnetic and gravitational fields store energies in comparable 

densities, thus rendering a detailed dynamical description a formidable 

task. The apparent complexities of the physical system necessitate 

idealizations in any theoretical description. Seemingly important features 

of the interstellar medium are isolated, abstracted and used as assumptions 

in mathematical models, whose predictions are then compared with observations. 

Discrepancies between predictions and observations lead to improvements of 

the original assumptions and, consequently, to a more accurate representation 

of the physical system. Models for the interstellar medium have gone through 

many such iterations. Yet, the above three fundamental questions concerning 

the formation, equilibrium, and stability of interstellar clouds and, 

ultimately, the process of star formation remain unanswered. 

B. Background and Perspective 

This paper undertakes to decipher the nonlinear interaction among 

gravitational, pressure, and magnetic forces under typical interstellar 

conditions. The gravitational instability of a uniform (non-equilibrium) 

gas was studied early in the twentieth century (Jeans 192S). The 

investigation of the equilibrium of an isothermal sphere, bounded by a 

constant external pressure and supported by internal pressure gradients 

against self-gravitation, provided us with much quantitative information 

such as the largest ("critical") mass that may still exist in equilibrium 
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at a given internal temperature and a fixed external pressure (Ebert 1955, 
1957; Bonnor 1956; McCrea 1957). Studies of the equilibrium in a direction 
parallel to the axis of symmetry of a gaseous, self-gravitating disk 
(Spitzer 1942; Ledoux 1951) were extended to include the effect of rotation 
and the growth of perturbations in the plane of the disk (Fricke 1954; 
Safranov 1960a, 1960b; Goldreich and Lynden-Bell 1965). But it was only 
recently that theorists paid due attention to the interstellar magnetic 
field, which for many years had been considered as an undesirable impediment 
to the processes of cloud collapse and star formation. At about the same 
time that E. N. Parker (1966) was demonstrating that the interstellar gas, 
which is partially supported by magnetic and cosmic-ray pressures against 
the galactic gravitational field, could be subject to a magnetic Rayleigh-
Taylor instability that tends to accumulate the gas into clumps, Mestel 
(1966) and Strittmatter (1966) were obtaining criteria for the collapse 
of a cold, self-gravitating, magnetic cloud in a direction perpendicular 
to the fie^d. Thus, the role of the magnetic field in the formation, 
equilibrium and stability of interstellar clouds was brought to the fore­
ground. The determination of equilibrium states for the highly conducting 
interstellar gas has been restricted to models mathematically tractable 
(Lerche 1967; E. N. Parker 1968a; 0. A. Parker 1973), rather than models 
preserving the essential features of the interstellar medium not the 
least consequential of which is a magnetic field "frozen-in" the matter. 

In pursuit of an understanding of the interplay among gravitational, 
pressure and magnetic forces that may produce observable entities such 
as clouds and stars, we proceed on two fronts. First, we study these 
forces on a large scale. E. N. Parker's suggestion, that interstellar 
clouds may be nothing more than clumps of gas held in magnetic field 
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"valleys" by the vertical gravitational field of the Galaxy, is a 
reasonable possibility especially since (i) self-gravitation for most 
interstellar clouds is several orders of magnitude weaker than that 
required for binding, and (ii) observations show an intimate association 
between the interstellar gas and field. We, therefore, seek final 
equilibrium states for the gas-field-gravity system that Parker (1966) 
showed to be unstable. Our choice is between a brute-force numerical 
solution of the magnetohydrodynamic (MID) equations and an elegant reduction 
and solution of the magnetohydrostatic (WS) equations. We follow the 
latter path. It rewards us with an insight into the basic physics of the 
problem. The challenge is to incorporate the assumption of flux-freezing 
in a time-independent problem; and then to solve the resulting equation(s) 
and compare the results with observations [see Mouschovias 1973, 1974 
(Paper I); reprint attached]. Here, we shall extend the formalism of 
Paper I to include the cosmic-ray gas. Contrary to previous expectations 
(Parker 1968b), the cosmic rays may not inflate the field lines forever, 
that is, an equilibrium state of the gas-field-gravity system may still be 
possible in the presence of cosmic rays. Second, we study the same forces 
on a (relatively) small scale—that of an individual interstellar cloud, 
held in a delicate balance by its internal pressure and a frozen-in field 
against self-gravitation and an external pressure, exerted by a hot and 
tenuous intercloud medium; the magnetic field threads both media, which 
are highly conducting. Presumably, such a cloud would give birth to 
stars upon collapse and fragmentation. Ne, therefore, obtain equilibrium 
states for a wide range of pertinent physical parameters and we determine 
"critical" values for them. Our endeavors on these fronts carry us a 
significant step forward in our quest for answers to the aforementioned 
three fundamental questions. In both, our large-scale and small-scale 
studies, we discuss possible refinements of our work. 
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II. FORMATION AND EQUILIBRIUM OF NON-GRAVITATING INTERSTELLAR CLOUDS: 
SMALL-SCALE CONDENSATIONS 

A. Thermal Instability 
1. A Steady-State Model 

Spitzer's (1951) suggestion that the cold and dense interstellar 
clouds are in pressure equilibrium with a hot and tenuous intercloud 
medium gained new impetus because of important theoretical and observational 
developments. On theoretical grounds, Hayakawa, Nishimura and Takayanagi 
(1961) concluded that, if a sufficient flux of low-energy (1 - 100 Mev) 
cosmic rays is present, it can ionize and heat (by the produced secondary 
electrons) the interstellar clouds up to the observed temperatures. 
Field (1962) showed that a low-density, neutral intercloud medium can be 

4 o Maintained at a high temperature (~10 K) by cosmic-ray heating, thus 
providing the pressure necessary for confining the interstellar clouds. 
On the other hand, Heiles (1968) found evidence for an intereloud medium 
with a density of 0.2 cm' and a velocity dispersion of 6 km/sec (implying 
an upper limit on its temperature of several thousand degrees). Subsequent 
work by Pikel'ner (1967), Field, Goldsmith, and Habing (1969), and Spitzer 
and Scott (1969) established that two thermally stable, nearly isothermal 
phases can exist in pressure equilibrium in the interstellar medium: a 
hot, tenuous intereloud medium (n — 3.2 cm* , T — 10 °K) and cool, dense 
clouds (n ~ 10 cm' , T ~ 20 K). What is crucial to the theoretical 
establishment of the possibility of the existence of two stable phases 
is a heating mechani«m directly proportional to the gas density [for 
example, low-energy cosmic rays; soft X-rays (Bergeron and Souffrin 1971; 
Habing and Goldsmith 1971)] and a cooling mechanism proportional to the 
second power of the gas density (for example, collisional excitation 
followed by radiativ* de-excitation in spectral lines at which the medium 
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is optically thin). 

In this steady-state, two-phase picture of the interstellar medium, 

matter "condenses" from the intercloud to the cloud phase if the density 

of the nearly isothermal intercloud gas increases beyond some critical 

value, thus causing a rise in pressure that cannot be maintained. The 

critical point marks the onset of a thermal instability (Field 1965) that 

proceeds almost isobarically and effects the transition from the tenuous 

to the dense phase. This transition (assumed to take place at a fixed 

degree of ionization) relieves the excess pressure so that t).« ambient 

pressure is maintained at the critical value (Field et al. 1969). If the 

actual pressure of the intercloud medium is below the calculated value, 

all interstellar matter must exist in the rarefied phase according to 

this model. Since 21-cm observations have established the existence of 

cold, dense clouds (for example, Clark 1965; Hughes, Thompson, and 

Colvin 1971; Radhakrishnan et al. 1971) one must postulate that the 

intercloud pressure is at the critical point. Under this postulate and 

the assumption of hydrostatic equilibrium in the vertical gravitational 

field of the Galaxy, Field et al. (1969) estimate that 75 percent of the 

gas must be in the dense phase. 

As a "phase transition" occurs it is possible for electrons to re-

coabine onto hydrogen ions. Schatznan (1958) had studied an instability 

resulting froa a reduction in pressure that accompanies the recombination 

process. Goldsmith (1970) and Defouw (1970), working independently, 

extended Field's thermal-instability criterion to account for a varying 

degree of ionization. Goldsmith followed the instability numerically 

(in one space dimension) and observed the details of the transition from 

the tenuous to the dense phase of this model of the interstellar medium. 
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Once again there exists a critical value of the gas density. Beyond 
this density, efficient radiative recombination of electrons onto 
protons causes a rapid decline in the equilibirum temperature. Cosmic-
ray heating cannot keep pace with the rapid losses, and the pressure drops 
below its ambient value while the density continues to increase. Although 
the new degree of freedom, that is, recombination, has altered the details 
of the process, the net result is a transition from the tenuous to the 
dense phase, as before. 

2. A Time-Dependent Model 
A thermal instability may also develop in a cooling (rather than a 

nearly isothermal) medium regardless of the particular value of the ambient 
pressure. The criterion for this instability was derived by Field (1965). 
If the interstellar medium is heated by sporadic supernova bursts, its 
subsequent cooling may be conducive to the formation of condensations. 
This idea is the basis of what is known as the time-dependent model of the 
interstellar medium (McCray and Schwarz 1971). Schwarz, McCray, and 
Stein (1972) worked out the details and pointed out the differences of 
this model from the steady-state one. They emphasize that, because the 
instability criterion depends on physical parameters (for example, cooling 
rate) which are functions of time in this case, the possibility arises 
that an initially growing perturbation may be damped at a lrter time, 
and vice versa. This is confirmed by their numerical calculations, in 
which they follow the time development of the instability in one space 
dimension. Mansfield (1973) followed the instability in a spherical 
geometry as well, having included heating due to ultraviolet photo-
emission of electrons from grains (Watson 1972). He also studied in a 
crude fashion the effect of a uniform magnetic field on the condensation 
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process. He found what Field (196S) and Goldsmith (1970) had already 
concluded, that is, even a moderate magnetic field ( ss 1 pgauss) renders 
the thermal instability ineffective in all but one direction (parallel to 
the field). 

3. Criticism 
The truth or falsity of their assumptions aside, and other agreement 

or disagreement with observations notwithstanding, under the most favorable 
of conditions both the steady-state and the time-dependent models of the 
interstellar Medium produce condensations with sizes (~ 0.01 pc to 
~ 0.1 pc) two to four orders of magnitude smaller than the sizes of 
most of the observed interstellar clouds. Moreover, the predicted "cloud" 
masses fall short of the observed ones by at least as many orders of 
magnitude. Why condensations predicted by these models continue to be 
referred to as "typical" interstellar clouds (for example, Mansfield 1973) 
remains a puzzle to this author. 

A serious difficulty with the tim?-dependent model within its own 
assumptions was pointed out by Goldsmith (1972): if each region of the 
interstellar medium is indeed heated by a supernova explosion once every 
10 years, within this time interval, density contrasts of less than four 
are produced because the longer wavelengths of a perturbation cool nearly 
isochorically. This is a direct consequence of the short cooling times 
typical of the interstellar medium (see below). 

In spite of their differences the two models are similar in that they 
employ a thermal instability for the formation of cool, dense sheets of 

1. Field (1970) recognized this difficulty: "If clouds actually form 
by thermal instability, it appears that small ones are initially favored". 
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gas in an otherwise uniform interstellar medium. This is the reason 
for which they cannot account for interstellar clouds such as the observed 
ones. Although perturbations with a broad range of wavelengths may grow 
at almost the maximum growth rate, these wavelengths have an upper bound 
determined by the fact (consistent with the force equation) that the 
"condensation mode" (Field 1965) evolves almost isobaricatly. This means 
that the upper bound on the fastest-growing wavelengths of a perturbation 
is approximately that distance within which a sound wave can establish 
pressure equilibrium in a time not exceeding the cooling time of the 
medium. Typical cooling times for the intercloud medium arc less than 
10 years and become shorter as the gas density increases (Spitzer 1968a; 
Jura and Dalgarno 1972). Therefore, with a sound speed smaller than 
10 km sec' , the wavelengths that can grow at a rate near maximum will be 
less than IP pc. Since the density of the intercloud gas is approximately 
0.2 atoms cm" , the resulting condensation must have a size of about 0.01 
pc if it is to reproduce the observed cloud densities (£ 30 atoms cm* ) 
by one-dimensional compression along the magnetic field. 

Aiming at obtaining larger condensations, Goldsmith (1970) considered 
the growth of perturbations with wavelengths considerably larger than the 
fastest-growing ones. He chose X » 300 pc (corresponding to an e-folding 
time of about 10 years); but even so, the final condensation had an 
extent of only 0.13 pc (at T-~20 °k) - still a dwarf cloud. At any rate, 
as we have already mentioned, shorter wavelengths that correspond to growth 
rates near the maximum one are favored by the instability. In addition, 
the thermal instability for a perturbation with a large enough wavelength 
to involve a sufficiently large mass will evolve more slowly than the 
magnetic Rayleigh-Taylor instability (see below), in which the magnetic 
field is instrumental (rather than a nuisance) in the formation of large 
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condensations. 

Schwarz et al. (1972) raised the point that inertial effects will 
maintain the flow and, therefore, a condensation will continue to grow 
for a long time after the instability shuts off. Valid as this point may 
be, it nevertheless is the case that the final size of a condensation 
does not usually exceed 1/2 of the wavelength of the perturbation that 
initiated the instability. Since the observed dimensions of clouds 
(for example, Heiles and Jenkins 1973, Heiles 1973) are often larger 
than the wavelengths which can grow with an e-folding time less than 10 
years, and since n > 30 cm' 3, the thermal instability will not account for 
the formation of these condensations even if inertial effects are included. 

B. A Statistical Model 
The complexity of the interstellar medium and the apparent random­

ness in the motion of clouds and in their distribution in space led Oort 
(1954) to suggest that a theoretical description of the interstellar 
medium must be statistical in nature. Once some low-mass clouds form, it 
is postulated that they collide inelastically and coalesce to form larger 
clouds. The process continues until a critical mass, corresponding 
to gravitational instability, is reached. The collapsing cloud presumably 
fragments and forms stars, the brightest of which ionize the remaining 
gas, thus generating conditions assumed to be appropriate for the forma­
tion of second-generation, low-mass clouds. Field and Saslaw (1965) 
formulated these statistical ideas into a mathematical model. They made 
the following assumptions, (i) Only small clouds of the same ("unit") 
mass are created, (ii) All clouds have the same cross section and the 
same speed and are isotropically distributed in velocity, (iii) All 
collisions between clouds are inelastic, so that agglomeration is the 



-11- LBL-3602 

inevitable outcome. 
Despite the simplicity of its assumptions, the statistical model 

-3/2 predicts a mass spectrum for clouds (m ) in rough agreement with 
observations. Because it invokes a binary collision process ultimately 
leading to star formation, the model provides a theoretical basis for 
Schmidt's (1959) empirical law, which states that the rate of depletion 
of gas because of star formation varies approximately as the second power 
of the gas density. [For an alternative theoretical foundation of a 
similar dependence of star formation on the gas density, see Mouschovias, 
Shu, and Woodward (1974), Paper II.] Another statistical calculation by 
Penston et al. (1969) predicts a maxwellian velocity distribution for 
clouds and a mean speed varying as m . For the purpose of this dis­
cussion, the important point is that the statistical model does account 
for a vide range of cloud masses provided, however, that upon its formation 
a "unit" cloud has mass of the order of 10 Mg. This implies that a thermal 
instability cannot be responsible for its formation in the presence of 
the interstellar magnetic field (as 3 wgauss) because the instability can 
develop only along field lines — see f IIA2 above. 

Heiles (197S) questions the very foundations of the statistical mode). 
He points to observational evidence that cloud velocities "are highly 
organized with respect to the [interstellar] magnetic field," and that 
"on* gains the impression that the gas is moving along the magnetic field." 
He also questions, on observational grounds, the random distribution of 
clouds in space assumed by the statistical model. Clouds are often 
found in cloud complexes [see, for instance, Raiaond (1966); Kerr (1968) 
and references therein], and long filamentary structures aligned with the 
magnetic field are prominent features of the interstellar medium. It may 
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be, however, that the cloud model is valid within the cloud complexes 
themselves (van Woerden 1967), although Heiles doubts even that. 

Overwhelming observational evidence demonstrates not only that 
interstellar magnetic fields exist, but also suggests that magnetic 
forces are comparable to gravitational and pressure forces. Hence, it 
should not be surprising that models ignoring magnetic effects run into 
difficulties sooner or later. Before we discuss the role of the magnetic 
field in the formation, equilibrium, and stability of interstellar clouds, 
we turn to a critic il review of the evidence for its existei.ee. 

http://existei.ee
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III. EVIDENCE FOR THE INTERSTELLAR MAGNETIC FIELD 

With very few exceptions, our knowledge of astrophysieal objects and 

procf"fs stems from analyses of radiation received at the earth. The 

interstellar magnetic field does not belong to the exceptions. It may 

be instrumental in the production of radiation, or it may modify radijtion 

propagating through the region where the field exists. 

A. Synchrotron Radiation 

Synchrotron radiation is produced by highly relativistic electrons 

gyrating in a magnetic field. It is highly directional about the 

instantaneous electron velocity, so that the line of sight must lie in 

the plane of the electron's orbit if the radiation is to be observed at 

all. The radiation from an ensemble of electrons can be recognized by-

its power-law spectrum and by its high degree of linear polarization, 

with the electric field normal to the plane defined by the magneti<- field 

and the line of sight (Ginzburg and Syrovatdkii 1965; also, Bless 1968). 

On these grounds and on independent evidence for the existence of cosmic -

ray electrons with energies around 1 GeV (see review by Meyer 1969), the 

synchrotron mechanism accounts for a major fraction of the background 

radio continuum emission in our galaxy (for example, Spitzer 1968a and 

references therein; compilation of observations from 10 MHz to 400 MHz 

by Daniel and Stephens 1970). 

Observations of synchrotron radiation establish the existence of an 

interstellar magnetic field. But to deduce the magnitude of the field, 

one needs to introduce a number of dubious assumptions, the most common 

of which is equipartition between the energies stored in magnetic fields 

and in cosmic-ray protons. [At a given energy per particle, the number 

of cosmic-ray electrons is only about 2% that of the protons (Earl 1961; 
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Meyer and Vogt 1961).] Additional uncertainties enter in estimating the 
size of the emitting region. For instance, the extent of the emitting 
region at high Galactic latitude is still controversial, with some nuthors 
claiming that the background radio continuum is produced in a disk of 2 kpc 
thickness, and others preferring a radio "halo" having a diameter of 20 kpc 
or so (see discussion by Woltjer 1965). Others yet speak of a thin-disk 
and a fat-disk component of the nonthermal radiation (Mathewson, van der 
Kruit, and Brouw 1972). Even if the size of the emitting region is known, 
however, additional assumptions concerning its internal structure are 
necessary in order to estimate the strength of the magnetic field. [The 
measured intensity of the radiation at some frequency is proportional to 
the line integral (along the line of sight) of the product of the number 
density of relativistic electrons and some power of the perpendicular (to 
the line of sight) component of the magnetic field - this exponent is 
usually around 1.8.] 

Under the specter of the above uncertainties, large-scale magnetic 
fields ranging from 10 ugauss to 50 ugauss are deduced (Woltjer 1965; 
Davis and Berge 1968). Daniel and Stephens (1970) used the fluxes of 
cosmic-ray electrons and synchrotron radiation observed at the earth to 
deduce an energy spectrum for electrons with energies £ 5 GeV (because the 
observed one has been modulated by the solar wind) and to show that this 
spectrum joins smoothly with the observed spectrum above 5 GeV (which does 
not suffer solar modulation) only if the magnetic field is in the range 
6 — 9 ugauss. They assumed, however, that the region of emission was 
homogeneous. Their method will give larger fields if the size of the 
region of emission is reduced. There is evidence for enhancement of the 
synchrotron emission associated with spiral arms (for example, see Price 
1974 and references therein). On the other hand, since regions of strong 
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fields are overweighted if the cosmic-ray density is nearly uniform, 

the background interstellar field nay actually be weaker than the one 

deduced by Daniel and Stephens. Weaker fields are supported by 

observations of Faraday rotation (see below). 

B. Polarization of Starlight 

The polarization of light from distant stars (Hall 1949; Hiltner 1949) 

and its correlation with interstellar reddening led to the generally 

accepted hypothesis that it is produced by elongated dust grains aligned 

dynamically due to the presence of a magnetic field (Davis and Creenstein 

1951; Davis 1958; Miller 1962). The grains are presumed to be paramagnetic 

and to have a complex index of refraction. Jones and Spitzer (1967) used 

statistical ideas to arrive at the same conclusions. We reproduce the 

essence of their arguments here. 

In the absence of a magnetic field a prolate grain in kinetic equilibrium 

with the surrounding gas will have equal rotational kinetic energies about 

each of its principal axes. Since the angular momentum about each principal 

axis is proportional to the square root of the moment of inertia about 

that axis, a grain will tend to rotate mainly about an axis perpendicular 

to the axis of symmetry. In the presence of a magnetic field, the axis 

of rotation will tend to align with the direction of the field; other­

wise dissipation of angular momentum due to magnetic torques will ensue. 

Thus, the axis of symmetry (major axis) of the prolate grains will tend 

to be perpendicular to the magnetic field. It is essential in these con­

siderations that the grain temperature be less than the gas temperature, 

so that the system will not be in thermodynamic equilibrium, that would 

destroy the alignment through collisions with gas atoms. The magnetic 

field needed to sufficiently orient the grains is of the order of 10 ugauss 
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although a weaker field (1 ugauss) would do if the grains were ferro­
magnetic (Jones and Spitzer 1967). 

As starlight propagates through interstellar space, the component of 
the electric field which is perpendicular to the major axis of the grains 
(and, therefore, more or less parallel to the magnetic field) is less 
efficiently absorbed by these particles. Consequently, a map of the 
observed polarization vectors will also reveal the topology of the inter­
stellar magnetic field. In order to obtain the magnitude of the field 
from extinction and polarization measurements, one must know the gas 
temperature and density and, in addition, such uncertain quantities as the 
shape, composition and temperature of the grains. Although our under­
standing of the nature and evolution of interstellar grains is increasing 
rapidly (see review by Aannestad and Purcell 1973), it is wise to settle 
for obtaining the general topology, rather than the magnitude of the 
field by this method. Ne consider it very revealing that the field lines, 
as unveiled by polarization measurements, exhibit an orderly large-scale 
behavior, but have "waves" or "arches" over distances of a few hundred 
parsecs (Mathewson and Ford 1970; Davis and Berge 1968). Serkowski (1973), 
however, observed a field fluctuation over a scale of 0.3 pc in the direction 
of the star cluster Stock 2. On the other hand, reports of fields with 
magnitude as large as 1 mgauss (Beichman and Chaisson 1974) should be 
regarded as tentative until confirmed or refuted by some other method of 
measurement — especially since they depend on scaling laws relating the 
magnetic field and the gas density which our work shows to be incorrect 
(see I VB2c). 

C. Faraday Rotation 
It is well known that a tenuous plasma becomes optically active (or, 
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birefringent) in the presence of a magnetic field. Faraday rotation 
refers to the rotation of the plane of polarization of a linearly-
polarized electromagnetic wave, or to the rotation of the major axis 
of an elliptically-polarized wave passing through such a medium. The 
angle of rotation over a distance L is given by (Spitzer 1968a, p. 51) 

, * • • 2 L 2 
49 * R Xc s (0.81 / ds n. B cos*) A* rad. (1) 

m o e 
where the wavelength (X) is measured in meters, the electron density (n 1 
in cm" , the magnetic field (B) in ugauss, and the distance along the line 
of sight (s) in parsecs. The angle between B and the propagation vector, 
k, is denoted by •. The sign convention is such that A8 is positive for 
right-hand rotation along the direction of propagation. The rotation 
measure is- denoted by R . 

Since typical rotation measures for the interstellar medium fall in 
.2 the range 1 - 100 rad m , it is clear that Faraday rotation is negligible 

for optical wavelengths. In principle one can use optical polarization 
to establish a standard and then measure A6 for radio waves, unfortunately, 
not many radio sources emit in the optical portion of the electromagnetic 
spectrum. To obtain R_ (see discussion by Davis and Berge 1968) one is 
forced to measure 49 for a least two radio wavelengths. However, because 
of the indistinguishability of rotation angles differing by IT, and because 
the position angle of the plane of polarization at the source is not usually 
known, one must measure A6 at several wavelengths, plotting the observed 

2-position angles as a function of A and fitting a straight line through 
the points. In principle, several points differing by multiples of * 
must be plotted for each observation, and that set must be selected which 
fits a straight line best. The slope of the line gives R , and its 

2 extrapolation to A » 0 gives the position angle at the source. 
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Once the rotation Measure is known, one may obtain the mean value 
of the magnetic field along the line of sight to the observed radio 
source only if the distance to the source and the interstellar electron 
density arc known. To obtain the latter would have been very difficult 
without the discovery of pulsars. Regular signals froa pulsars reaching 
the earth exhibit a dispersion effect (that is, a difference in the arrival 
time of the left-handed and right-handed circularly polarized nodes) that 
can be precisely measured. This is given by 

at - I 2 r I ds n. ) X 2 . (2) 
\ 2 « •« « 0 / 

L 
where all units are in cgs. The dispersion measure. D = / ds n , is 

" 0 e 

obtained froa a single Measurement and it constitutes a direct Measure of 
the column density of electrons along the line of sight. If R H and D | R 

are measured for the same source, one can obtain the mean value of the 
magnetic field along the line of sight, < B ( ( > . This is weighted by the 
electron density in the region between the source and the observer. (The 
contribution of the earth's ionosphere is taken into consideration.) Also, 
reversals in the direction of the magnetic field would produce cancellations 
in A8, so that the measured <B.,> would be smaller than the general inter­
stellar field. Such irregularities in the field may be detected, however, 
if measurements of starlight polarization and Faraday rotation are com­
bined, since the two methods measure two mutually orthogonal components of 
the magnetic field. 

Faraday rotation measures have also been obtained and analyzed for 
many extragalactic radio sources (Morris and Berge 1964; Gardner and 
Davies 1966; Gardner, Morris, and Mtiteoak 1969; Wright 1973). These 
observations yield <n B„> rather than <B||> itself, since an inde­
pendent determination of < n 0 > is not usually made. But the product 
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< n B.j> is very useful especially since extragalactic radio sources 
are distributed all over the celestial sphere. 

Wright (1973) recently analysed the rotation Measures fro* 3S4 extra-
galactic radio sources, and Manchester (1974) did the sane for 38 pulsars. 
Their results are in good agreement, indicating a large-scale magnetic 
field directed '.oward I » 90° (both above and below the Galactic plane). 
The direction of the field is in fair agreement with that determined by 
Appenxeller (1968) fro* interstellar polarization observations for stars 
near the south Galactic pole. He found that the mean direction of the 
polariiation vectors was * " 80°. According to these workers, the local 
helical field, which was suggested in order to explain the starlight 
polarization data (Hornby 1966; Nathewson 1968; Mathewson and Nicholls 1968: 
Hathewson 1969), is in conflict with the Faraday rotation observations. 
This resolves a long-standing theoretical dilemma: a nonvanishing magnetic 
field in the Galactic plane, having opposite directions above and below, 
implies that there exists a current sheet in the plane. 

The magnitude of the field determined fro* Faraday rotation measure­
ments lias in the range 1 — 3 ugauss. Superposed on the general back­
ground field, both Wright and Manchester find field "irregularities" 
with field strength compsvable to that of the background field. The 
typical scale of the "irregularities" appears to be a few hundred parsecs. 
This is significant when combined with the interpretation of data on 
rotation measures of extragalactic radio sources given by Gardner, White-
oak, and Morris (1967). They found it necessary to assume that magnetic 
field lines protruded from spiral arms at least at some regions. However, 
they suggested that gas flow was responsible for pulling the field lines 
away from the Galactic plane. In Paper I we attributed the arches in the 
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field lines observed in the solar neighborhood to the development of the 
magnetic Rayleigh-Taylor instability, and we argued that field lines are 
inflated only because gas is drained from their raised port ions. 

D. The Zecman Effect 
The splitting of the 21-cm line into three components in the presence 

of a weak (on laboratory standards) Magnetic field raises the possibility 
of studying the interstellar magnetic field in the most direct manner. 
The frequency separation between the two shifted, or o, components of the 
line depends only on the component of the magnetic field in the direction 
of propagation, and is given by 

The notation is the conventional one. If we neglect terms of order 
m /m_ • 1/1836 « 1, the split of the hyperfine-structure energy levels 
due to a weak magnetic field, B, is given by A £ = U_ g, n p B, where 
u. « «n/2m c is the Bohr magneton, m£ is the azimuthal quantum number, 
and gp is the Land6 g factor. The orbital angular momentum vanishes in 
the ground state (I* • 0), and g p - [f'(f • 1) • j'(j' • 1) - i'(i' • 1)]/ 
f'(f* • 1) • 1 because j' - i' - 1/2. Since mj; • 0, ±1, eq. (3) follows. 
The subscripts +1 and -1 in eq. (3) refer to values of m~. Numerically, 
the split Av is equal to 2.8 Hz per ugauss for propagation along the field 
(• » 0). Since line widths are typically measured in kHz, observations of 
the Zeeman effect in hydrogen are very difficult, and special techniques 
become necessary. [See Davis and Berge (1968, pp. 762-76S) for an 
excellent discussion and for the reason why the transverse Zeema,, effect 
is even more difficult to detect.] As in the case of Faraday rotation, 
only the mean field along the line of sight is measured. However, fields 
measured through Zeeman observations may be indicative of conditions within 
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interstellar clouds rather than representative of the ambient interstellar 
fields (see below). 

Among the Many attempts to observe the Zeeman effect in interstellar 
clouds, only few produced positive detections. Most measurements put 
only upper limits on the magnetic field, leaving even the direction of 
the field undetermined. Although observers and theorists generally agree 
that our knowledge of the interstellar field that resulted from Zceman 
measurements is meager, we take much interest in the fact that both the 
few positive detections and the upper limits reveal fields consistently 
weaker than those expected on theoretical grounds. The usual argument 

is that, under the assumption that the magnetic field is frozen in the 
2 matter, the background interstellar field would be enhanced by a factor 
2/3 (n /n. ) ' during the formation of clouds (of density n ) through spherical 

contraction and condensation of the intercloud medium (of density n. ). 
It follows that clouds with densities 30 - 1000 cm" should have fields 
in the range 85 - 300 ugauss, with 100 ygauss being a rather typical 
value. No such fields have been observed (see Verschuur 1971 and references 
therein). The few positive detections are summarized in Table 1, which 
is taken from Verschuur (1974). 

Spherical, isotropic contraction has been taken so seriously that a 
straight line with slope equal to 2/3 has been frequently forced through 
points of log B versus log n plots (for example, Verschuur 1970a), even 

2. The conductivity of the interstellar medium is given by o~10 T ' 
(Spitzer 1962), where T is the temperature. The dissipation time for 
the magnetic field over a characteristic scale L is T * 4 iro L /c . 
Since T « 50-10 °K and L « 10 pc, then T > 1 0 2 1 years! Therefore, 
flux-freezing is an excellent assumption. However, the motion of ions 
(and the field) through neutrals must be considered (Spitzer 1968a) for 
densities larger than ~ 1 0 8 cm' 3 (Nakano and Tademaru 1972) — see 
discussion in S VI below. 
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though a line with a slope of 1/3 would fit the (uncertain) data at 
least as well. He shall show in 5VII that weak fields Must be the rule 
rather than the exception, thus removing the discrepancy between observa­
tions and theoretical expectations. 

Atoaic hydrogen is believed to bo converted to Molecular hydrogen 
in the densest clouds, in which Many Molecules were discovered sec 
reviews by Heilcs 1971; Rank, Townes, and Welch 1971; Solomon 1973; 
Zuckerman and Pdmer 1974). The Magnetic field within the molecular 
(or, dust) clouds is expected to be relatively high, since the gas 
density often exceeds 10 CM' The field May be Measured through 
Zeeaan observations on the 18-cm line of OH. One such Measurement by 
Turner and Verschuur (1970) yielded an upper limit of about 10 ugauss, 
which Heiles (1971) finds rather small compared to (popular) expectations. 
This contrasts sharply with the upper limit of 5 ugauss obtained for 
another dust cloud (Verschuur 1970b) when the measurement was performed 
on the 21-cm line, which is seen in self-absorption. To reconcile the 
two, Heiles (1971) suggests that the hydrogen exists in a thin shell 
around the Molecular cloud, so that the 21-cm result does not reflect the 
physical conditions inside the dust cloud. This point is well taken. Yet, 
it is our view that the smaller field, even uncorrected for projection 
effects, May not be inconsistent with theoretical expectations based on 
our calculations of equilibria of self-gravitating, magnetic clouds. 

There are additional, indirect Methods for obtaining the interstellar 
Magnetic field (see Noltjer 196S; van de Hulst 1967; Davis and Berge 1968), 
but they yield such uncertain estimates that their discussion here is not 
warranted. They are based Mainly on the virial theorem (for example, see 
Bieraann and Davis I960) applied to various regions of, or the entire inter-
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stellar aediua. Me shall discuss some of the shortcomings of the 
virial theorm in S VI (see also Mestel 196S). 
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IV. THEORETICAL DESCRIPTION OF LARGE-SCALE PHENOMENA IN 
THE INTERSTELLAR MEDIUM 

A. The Dynamical Equations 
1. A System of Thermal Gas, Magnetic Fields, and Gravitational Fields. 

We Mentioned in i I that the interstellar medium is such .1 complex 
system that a complete theoretical description is impossible at present. 
However, the range and relative magnitude of some physical parameters of 
the system are such that the framework of a useful theoretical description 
•ay be specified. First, as we have already noted, the electrical conduc­
tivity of the medium Is so high (10* - 1 0 1 3 sec' 1) and the scales of 
interest are so large (10*' - 10 cm) that we may assume that the 
magnetic field is frozen in the ionized matter. Furthermore, the excellent 
coupling between electrons and ions on the one hand f^ c ou (e-i) 
~10" sec" J and between ions and atoms on the other [u. ., (i-a) 

-9 -1 ~10 sec ] permits us to treat the three-component gas as a single, 
compressible fluid. 

Mien the phenomena of interest occur on relatively large scales 
(for example, formation of interstellar clouds, motion of clouds through 
the intereloud medium, cloud-cloud collisions, cloud collapse), one may 
specialize to very long-wavelength hydromagnetic disturbances. In this 
regime, in which an electron collides many times before it is forced to 
reverse its direction by the itcillating electric field of the disturbance, 
collective plasma effects become unimportant (u ~ 10 s sec ). Although 
collision frequencies are relatively large (compared to the frequency of 
the hydromagnetic wave, u ~ 10* sec" ) , they are nevertheless much 
smaller than gyrofrequencies (w c ~ 10 sec" for electrons). Hence, 
diffusion across the field (which would result from collisions between 
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opposite charges before a gyration is completed) may be neglected. In 
summary, we have the inequalities 

u >> u >> u >> u. (41 

p c coll. v ' 
For scales much larger than collision mean free paths we may also neglect 
viscosity and thermal conduction, and we may write the magnetshydrodynamic 
(MU) equations appropriate for cur system. 

We consider a conducting gas of density p, pressure P, and temperature 
T embedded in a magnetic field $ and a gravitational field g, derivable 
from a potential *. Both the gas and the stars, whose density (pJ is 
known from observations, may contribute to Hi. The gas has a bulk velocity 
v. A current density J maintains the frozen-in field, which is derivable 
from a vector potential A. The entropy per gram of matter is denoted 
by S, and £ represents the net rate of energy loss (losses minus gains) 
per gram of matter. The MID equations are 

(5) 
x * (6) 

(7) 

(8) 

(9) 

(10) 

(ID 

(12) 
(13) 

S • - V lr tn(P (>"*) • const. (14) 

mass conservation: jj-t p 7 • v « 0 

force equation: p I T " " ^P " p'* * c 
energy equation: p T jj| « - prf(p, T) 

ideal-gas law: P • £• k T 
£ 

flux-freezing: f f - v - x f v - x f ) 

Poisson equation: V 2* - 4«G (p. • p) 

Ampere's law: v-xf.*i T 
definitions: g - -v* 

f - V - X i t 
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In the above equations to is the mean nass per particle; k is the Boltzmann 
constant; c is the speed of light in vacuum; and Y - 5/3. The comoving 
time derivative is defined by d/dt = 3/3t + v • 7. Spitzer (1962) gives 
a detailed discussion of some fine points in the assumptions behind the 
MHD equations. References already cited in § IIA discuss the loss function 
in the energy equation. 

2. The System with Cosmic Rays Included 
The dynamical effects of cosmic rays in the Galaxy have been the 

subject of intensive investigation for several years. A long series of 
important papers discuss the conditions under which cosmic rays, considered 
as a very hot, collisionless plasma, may be described in the MUD approxi­
mation. Three excellent reviews (Parker 1968b, 1969a; Lerche 1969) point 
out what phenomena are excluded when Such a description is adopted, but 
they argue that the MHD description is the proper one for cosmic rays in 
the Galactic environment. Our new approach to magnetohydrostatic (MHS) 
equilibrium configurations will shed light on the assumptions, on which 
some previously derived consequences of the existence of cosmic rays in 
interstellar space are based. In particular, the conclusion that cosmic 
rays will inflate the interstellar magnetic field indefinitely (Parker 
1965a, 1968b) will be discussed critically in §VBSd. Here we H-aw from 
the reviews mentioned above and we summarize the MHD description of the 
cosmic-ray gas. 

In the absence of a magnetic field, the cosmic-ray pressure is main­
tained isotropic to within ~ 1 % by various rapidly growing (T ~ 10 years) 
relativistic micro-instabilities (for example, see Lerche 1969). In 
Introducing the magnetic field, we shall restrict our attention to very 
long-wavelength (much larger than gyroradii) hydromagnetic waves. In this 
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2 2 regime and for slow bulk notions (v << c ) , Parker argues that an 
isotropic cosmic-ray pressure is a fair approximation in most astro-
physical situations even in the presence of a magnetic field. It follows 
from this and the first law of thermodynamics that, under adiabatic 
conditions, 

^ • ( • T ^ ) » • * - • • • 

The quantity p denotes the mass density of cosmic rays. (The rate of 
change of the total energy of cosmic rays in a volume element <5V is 
d ( P c r c 2 SV)/dt - - P c r d(6V)/dt. One then uses the relation d(<SV)/dt = 
6V V • v to derive eq. [IS].) A relation between P and p is not cr cr cr 
simple if a collection of relativistic particles is considered, because 
each particle contributes to the speed of sound, 

C c r , (d V d p c r > 1 / 2 » <16> 

in a manner that depends on its own Lorentz factor, Y, = G/m c . But in 
the extreme relativistic case, we have the relation 

P « i p c 2 2 p C 2 . (17) 
cr 3 Kcr Fcr cr l ' 

Then, it follow;: hat 
d in P d tn p - d tn n „ cr cr £_ cr_ 

dt dt 3 dt 
(18) 

Because the cosmic rays and the thermal gas are tied to the magnetic 
field, their bulk velocities v and v (v c r, v « c ) will have equal 
components in a direction perpendicular to the field. In the long-wave­
length limit, the electric field (E) in a frame with respect to which the 
thermal gas and the cosmic rays have velocities v and v , respectively, 
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is given by 
•* v 

i « . 1 x | . — £ £ x |. (19) 

Thus, an equation identical to (9), with v replaced by v , holds for 
the cosaic-ray gas as well. 

If the aotion of the cosmic-ray gas along field lines is completely 
decoupled froa that of the thermal gas (cf. Kulsrud and Pearce 1969), 
one aay write the force equation for cosmic rays in a direction parallel 
to the field as 

Actually, gravitational forces on cosaic rays are negligible and the 
last tera aay be left out of equation (20). To show this, we may compare 
the magnitudes of the last two terms of equation (20) and make use of 
equation (17): 

!P~ ». •! 'crl*ll *• 1**1 "cr vfl »• "cr-'ll T ' 1°"' vescape < < 

1*1 Pcrl 4 * » «>crl 4 4 

The presence of cosaic rays introduces a "supratheraal aode" (Parker 196Sb) 
in addition to the usual fast and slow hydromagnetic modes. It represents 
a sound wave in the cosaic-ray gas propagating along field lines with 
speed C (see eq. [17]). The supratheraal aode is independent of the two 
hydroaagnetic aodes except for propagation nearly noraal to the field, 
in which case the fast aode collapses to zero and the supratheraal aode 
takes over. 

The nearly instantaneous communication of eosaic rays along field 
lines establishes pressure equilibrium in the cosmic-ray gas over 
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a distance I in a time L/C « L/c. If L is as large as 1 kpc, this time 
is «10 sec. This is much smaller than the time scale of the hydro-

14 magnetic phenomena of interest to us here which is ~ 10 sec. We may 
therefore ignore the inertial effects of the cosmic-ray gas and we may 
write that 

'll Pcr E S ' ' Pcr ' B = ° C 2 l 3 ) 

as a further approximation to equation (20). Equation (21a) states that 
the cosmic-ray pressure is constant on a field line, but it does not 
determine its value, which is different for different field lines. In 
IVBSd we shall show how to calculate P at the position of any field line 
without reference to equations (15) and (17). For now, we note that 
equation (21a) will be exact at equilibrium insofar as the hot (T - 10 °K) 
and tenuous (n ~ 10~ cm" ) cosmic-ray gas is not affected by the 

-9 2 galactic gravitational field (g - 10 cm/sec ). 
It reaains to specify how cosmic rays will modify the force equation (6) 

in a direction normal to B. Once this is done, the system of M<D equations 
including cosmic rays will be closed. We write the force equation for 
cosmic rays in a direction normal to the field by neglecting the gravi­
tational term because of the reason given above: 

(•- *'?) (^4x • - *•'- • i . • «*• 
where j is the current density due to cosmic rays alone. Because of 
eq. (21a), the term - \ ? c r "*y h« replaced by - V P in eq. (21b). The 
resulting equation must be combined with eq. (6) - the left-hand sides 
of the two equations oust be added together, and so Bust the right-hand 
sides. We note, however, that P c r • 3 P C T/c (see eq. [17]) is much 
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smaller than p; in a typical HI region P C_/P ~ 10" . Hence, we may 
neglect the inertial term in eq. (21b), which is combined with (6) to 
yield 

p dt = " ' P * * Pcr " p** * C? + ^cr 5 " 5 / c - { 2 1 c ) 

Finally, eq. (11) undergoes the obvious modification 

7 * $ = (4 n/c) (] * j" c r). (21d) 

The approximation expressed by eq. (21a) was also used by Shu (1974), 
who asserted that eq. (21a) is sufficient to categorize the cosmic-ray 
gas and that the system of MHD equations is closed without reference to 
eqs. (15), (17), and (18). In view of our remark above, namely, that 
equation (21a) states that P is constant on a field line without specifying 
its value, it is clear that eqs. (IS) - (IS), which specify how P changes 
in time, are also needed in order to close the system of MHD equations. 

3. Approximations of the Energy Equation 
Ne have already noted that virtually all information received from 

the Galactic and extragalactic space comes in the form of photons. It 
is natural, therefore, that the energy equation is the most exhaustively 
studied one in astrophysics. In our work we shall focus on Newton's laws 
as supplemented by Maxwell's equations. The force equation, and in 
particular magnetic, pressure, and gravitational forces, will be the 
subject of our studies. All thermodynamics will be dumped into an 
equation of state P « P(p). We shall assume an isothermal equation of 
state frequently and then we shall generalize our formalism to the 
case P • P(p) without actually solving the more general problem. In 
view of the meager theoretical (as well as observational) understanding 
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of the phenomena which we shall study, we offer no apologies for this 
procedure. We shall discuss the priorities in refining our work at 
the end. 

We begin with the derivation of some (known) implications of flux 
freezing (eq. [9]), upon which we shall call later. 

B. Implications of Flux-Freezing 

1. Two-dimensional Geometry 
If v and B are confined to a plane (x,y) and all quantities are 

assumed independent of z, we may set A • A • 0 without loss of 
* 7 

generality. Then we have that 

t - l t \ z (x.y) = i f A(x.y). (22) 

Since B may be written as 

t - -tz x VA, (23) 

it follows that 
I • VA • 0, (24) 

so that A(x,y) is constant on a field line. Moreover, we may write 
eq. (9) in terns of A as 

at v « S • V5, (25) 

where 5 is an arbitrary scalar function of x and y. Both A and v « J 
-have z-coaponents only. Therefore, V£ must vanish. 

By using (23) in (25) and expanding the vector triple product, we 
obtain 

||- -aztf . VA) + VA (ez • v). 
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Since e • v * 0, we make use of (22) to find 

; z 3? " «Z<£ * v • ?A) = 0. (26) 

Hence, in addition to being constant on field lines, A is also a constant 
of the motion. In this geometry, the magnetic flur between two neighboring 
field lines, characterized by A and A + £A, is equal to 6A. So eq. (26) 
is a statement of conservation of magnetic flux through any surface co-
moving with the fluid. 

2. Three-dimensional Geometry with Axial Symmetry: A Poloidal Field 
Conclusions similar to those described by eqs. (24) and (26) may also 

be derived in the case of a three-dimensional geometry with axial 
symmetry (all functions assumed independent of • ) . We let r be the 

-*• (cylindrical) radial coordinate. Once again, eq. (25) follows. Now A 
and v « t are in the azimuthal direction. Hence, $€ * 0. We write 

- v" • (v • it) - (v • V)X - (X • $)v - X * (V x v). 
Since v is in the (r,z) plane and X has only a •-component, the first term 
on the right-hand side of eq. (27) vanishes. The third term may be written 
as 

(X . v ^ - A # r" 1 g (e r v r • e, v,) -1 3 
l e r v r * c z V 

(28) 
V"1** Vr 

The last term in (27) vanishes because $ * v is in the •-direction. Al­
together, then, we have 

f| - - $ • *)X - r-1 X V 

° r At --X 
+ dr 
• A 3 t 



-33- LBL-3602 

We, therefore, conclude t.hat 

^ • ft " 0. (», 

where A = A.. Eq. (29) is a statement of flux conservation in the 
present geometry. It is easily shovm directly that the magnetic flux 
through a contour, described by the equation r * constant, is equal to 
2 «*. Direct calculation also shows, by using eq. (13), that 

I • $• • 0, (30) 

so that • is constant on a magnetic surface. Ne see that flux-freezing 
in a three-dimensional geometry with axial symmetry implies relations 
similar to those in the two-dimensional rectangular geometry, except 
that • = rA replaces A. 
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V. FORMATION AND EQUILIBRIUM OF NON-GRAVITATING INTERSTELLAR 
CLOUDS: LARGE-SCALE CONDENSATIONS 

A. The Magnetic Rayleigh-Taylor (or, Magnetogravitational) Instability 
1. The Basic Physics of the Instability 

Parker (1966) argued on the basis of the virial theorem that the 
interstellar magnetic field is confined to the galactic disk only by 
the weight of the highly conducting interstellar gas. As long as the 
field lines are parallel to the galactic plane, an equilibrium state is 
possible. At any distance from the axis of galactic rotation, a gas 
element is acted upon by a centripetal force appropriate to that distance; 
this is the only force necessary to keep the gas element in orbit about 
the galactic center. In a direction perpendicular to the galactic plane, 
the gas is distributed in such a manner that, at each altitude, the forces 
due to its pressure gradients, aided by the magnetic-pressure gradients, 
balance the vertical gravitational forces. Self-gravitation of the gas 
is neglected in this picture because the mass in the form of gas is only 
a few percent of the mass in stars. 

Mathematical simplicity and observational evidence that the magnetic 
field is more or less parallel to the local spiral arm suggest the study 
of the nature of the equilibrium of the gas-field-gravity system in two 
diaensions. Horizontal distance is measured in a nearly azimuthal direction 
(x-axis), and the y-axis extends perpendicular to the galactic plane. All 
quantities are then assumed independed of z, the distance along a radial 
"direction in the galaxy. Some interesting effects appear when proper 
consideration is paid to the third (z) dimension (see Parker 1967a, 1967b; 
Shu 1974), but they do not alter the basic conclusions of the two-dimensional 
calculations even when new physics, such as differential rotation, is 
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introduced. 
In this two-dimensional geometry, Parker's stratified equilibrium state 

is symmetric about the x-axis because the galactic gravitational field 
exhibits such symmetry: 

g = -v* = -e y gCy), (31) 

where Parker assumed that 

g(y) • -g(-y) * a positive constant. (32) 

One, then, considers only the upper half plane. The magnetic field, t, 

is assumed to point in the +x-direction everywhere. [The essence of the 
conclusions (see below) does not change when one considers the case in 
which g is a linear function of y (Parker.1966).] Parker also assumed 
that the ratio, a, of the magnetic pressure to the gas pressure, P, is 
fixed in the initial state, that is, 

2 
a = B /8ir P = a constant. (33) 

In fact, Parker (1969a) argued on observational grounds that a is very 
nearly equal to unity. We shall return to this point below. 

The equation of state is taken as 
P - P C 2, (34) 

where C is the isothermal speed of sound in the gas. The force equation 
is nontrivial only in the y-direction, and it is written as 

Its solution (for y > 0) is 
2 2 

p w 5 JHS =- ! r£r i 2 " p ( 0 ) ° 2 «*<-?/«)• C36) 
where p(Q) is the value of the gas density at y » 0, and the scale height H 
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is defined by 

H H (1 + o) C2/g. (37) 

Parker (1966) introduces perturbations with wavelengths A and X 
x y 

in the x- and y-dircctions, respectively, and requires that the field 

line originally coinciding with the x-axis remain undeformed, as well 

as that the perturbations be bounded at infinity. A representative 

perturbation is written as 
SK • -Uj A(y) sin(2*y/A ) cos(2«x/A x). (38) 

The quantity u. is a positive constant much less than unity. He solves 

the linearized MID equations and finds that the stratified ("initial") 

state is unstable, provided only that A and A simultaneously exceed 
* y 

some critical values, A and A , respectively (see eqs. [31] and [52] 
* . y 

of Paper I). The existence of a lower limit on A for instability to 

develop is understood on simple physical grounds. If A is very large, 

the curvature of the field lines is small, and so is the tension. The 

vertical galactic gravitational field acquires a component along a de­

formed field line that induces gas Motions, tending to drain matter from 

the raised portion of the field line. As gas gets "unloaded" from the 

inflated portion, the magnetic-pressure gradient remains unopposed there 

(where the tension is small) and, therefore, it causes an additional 

rise of the already inflated part. Hence, the situation is unstable. 

The physical origin of a critical wavelength in the y-direction is 

more obscure and, as far as we know, this point has not been discussed 

elsewhere. Parker's dispersion relation shows that if A < A , the 

initial stratified state is stable even if A > A . To understand why 

this is so, we proceed as follows. First, we note that if A < « there 
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is always a set of field lines that are left undeforaed by the perturba­
tion (38). They are located at y = n A /2, n = 1, 2, 3, ... Above and 
below each of these special field lines, the rest of the field lines, that 
is, the deformed ones, curve in an opposite sense (sec Fig. 1). As the 
instability progresses, this "symetry" implies that the undeforaed field 
lines will retain their special status. (Rigorously, 5v has the same 
y-dependence as the perturbation 6A; hence, it vanishes at the position 
of the special field lines.) Consider, then, the first undeformed field 
line, at y « X /2. It acts as a natural "lid" to the systea below it 
which, in fact, contains aost of the nass and energy of the entire system. 
Now, we recall that the instability is driven by (i) the galactic gravita­
tional field that causes the gas to slide down the deformed field lines; 
and by (ii) the magnetic-pressure gradients at the position of the "un­
loaded" portions of the field lines. The instability is opposed by (i) 
the increase in the field strength due to the compression that takes place 
at the position of the "valleys" of the field lines; and by (ii) the tension 

of the curved field lines. The gas-pressure gradients are neglected for 
3 

the purpose of this argument. If the first undeforaed field line is too 
low, that is, if \ is too small, the instability cannot develop because 
the volume available for the field lines to expand is restricted. As a 
matter of fact, if field lines do inflate in the usual manner, they will 
"pile up" close to the first undeforaed field line in the region where 
inflation occurs. Consequently, the aagnetic field will increase there, 
tending to suppress rather than to aid the instability. 
3. See Paper I S IV and I VIb for a more complete discussion of the 
energetics in the case of an isothermal transition. Pressure forces are 
important in determining final equilibrium states; after all, they are the 
only forces available to oppose the galactic gravitational field along 
field lines. 
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If X is large enough, the effects just described will remain the 
sane qualitatively. But, because the "pile-up" of field lines occurs at 
a such higher altitude than before, the magnetic field was much weaker 
there in the first place. Therefore, the increase in the field due to 
the "pile-up" is not sufficient to suppress the expansionist tendencies 
of the magnetic-pressure gradients below, which remain virtually unopposed 
because of gas drainage from the inflated portions of field lines. On 
the basis of energy considerations, the increase in the magnetic energy 
due to the compression at the "lid" is considerably smaller than the 
decrease in Magnetic energy resulting from the inflation of field lines, 
which originate from much lower altitudes. Incidentally, these considera­
tions provide a physical explanation for the fact, that, for a given (unstable) 
X the growth-rate of the instability is maximum if A = *>. Clearly, if 
the first, undeformed field line occurs at infinity (where B = 0), the 
magnetic field by itself does not initially act in the region of expansion 
so as to prevent the instability, which proceeds at a rate faster than 
it would if in this part of the system the field were acting so as to 
suppress it. 
2. Retrospect 

Altogether, the magnetogravitational instability involves motions tending 
to accumulate the gas into clumps at the position of valleys of the field 
lines. This led Parker (1966) to suggest that interstellar clouds form 
in this manner, and they are suspended by the field at the position of 
the valleys. Whether, in fact, these condensations will resemble the 
observed insterstellar clouds can be decided only if the final states for 
the instability are known. And these can be determined only by solving 
the nonlinear WIS equations with appropriate boundary conditions. In 
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Paper I we found such final states. In the process, we had to tackle 
several interesting theoretical questions, (i) How does one include 
the assumption that the magnetic field is frozen in the matter in a time-
independent problem, so that a connection between initial and final states 
may be made? Our method for doing this has potential and direct applications 
in such diverse research areas as pulsar magnetospheres, equilibria of 
high-beta plasmas, and steady (but non-uniform) fluid flow in the absence 
of magnetic fields if vorticity is conserved in the same sense that 
magnetic flux is. It is well known that vorticity (or, circulation) is 
conserved for barotropic fluids (Bjerknes1 theorem), (ii) What is the 
appropriate "potential energy" of an isothermal (Y * 1) plasma? Without 
an expression for the effective potential energy one would not know 
whether the calculated equilibrium states are higher or lower in energy 
than the initial (unstable) state. Finally, we developed an original 
procedure for solving the reduced MIS equations since neither analytical 
nor numerical methods for solving the equations were known. 

A question asked frequently is: Why should one seek equilibrium 
states for (any model of) the interstellar medium, especially since one 
knows in advance that this system is a highly complex dynamical one? 
First, for the practically-minded skeptic, we point out that the e-folding 
time for the magnetogravitational instability (~10 years) is smaller 
than other relevant tiae scales, such as the passage through two successive 

a spiral shock waves (~10 years). Our equilibrium states, then, are 
referred to as "final" in the sense that they can persist for almost 10 
years — before they might be modified by the general decompression that 
takes place downstream from a galactic shock (see Paper II). If the in­
stability is triggered regularly (for example, by spiral density shock 
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waves), one nay hope to observe such configurations in the interstellar 

medium of our own, as well as of other, spiral galaxies. On the other 

hand, if the instability is active today, one might observe gas motions 

consistent ith the final states. There are more general theoretical 

reasons for which a knowledge of equilibrium states of any system is very 

useful, but these are best dealt with in the context of self-gravitating 

interstellar clouds (see 5 VIII). 

Ne now ummarize the main features and predictions of our equilibrium 

solutions, after we settle an important question bearing on the very 

existence o* final equilibrium states. 

B. Final States for the Magnetogravitational Instability 

1. Do Final States Really Exist? 

We could offer our calculated final states as a proof of the 

existence of such states for the idealized system under consideration. 

We would nevertheless prefer to understand their existence on the basis 

of first principles. After all, it has been argued in the literature on 

intuitive grounds that such states should not exist! What prevents the 

field lines from expanding indefinitely while the gas slides down into 

every thinner clumps cf matter at the position of the valleys? In answering 

this questi' i we distinguish two cases. 

a. X «- ». A finite vertical wavelength of the initial perturbation 

implies that a set of field lines is left undeformed. In particular, the 

first undeformed field line acts as a natural "lid" on the part of the 

system below. The • iid" by itself would prevent the unlimited expansion 

of the field lines. For this reasoning to be correct it must be verified 

that'the y-conponent of the velocity always (not just initially) vanishes 

at the undeformed. field lines. This calculation has not been attempted. 
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But it seems reasonable that, once the field lines have deformed in an 
opposite sense above and below each undeformed field line, it would take 
a finite amount of energy to reverse that trend. In the absence of a 
continuing source of agitation this may happen only if a flow of energy 
occurs from the shorter to the longer vertical wavelengths of the spectrum 
of the initial perturbation. Eventually, then, that state will prevail 
that is characterized by X » •. For, if this "mode mixing" ceases at 
some X < <°, we would have illustrated the point that a final state 
with a finite X is possible. So, we turn to ths second case. 

b. X « «. Will the field lines inflate forever in this case? 
We suggest that they will not. The increasing curvature of the field 
lines, both at the position of the valleys and at the "wings" (where 
inflation occurs) of a condensation, will eventually stop the expansion. 
To show this, we consider two initially neighboring field lines character­
ized by A and A + AA. Since the field lines are held down at the position 
of the valleys by the weight of the gas, we focus our attention at the 
peaks of the two field lines (points a and b of fig. 2). Specifically, 
we consider them after they have moved further apart because of the 
general inflation of the field lines. Ne denote by h the distance between 
points a and b. Since AA is fixed by flux conservation, the mean magnetic 
field in the space between a and b varies as> 

§ - § x « h" 1. (39) 

The expansive tendencies of the magnetic field are due to the pressure 
* 2 -1 

force -Vx B /8* acting in the +y-diTection in this region. Since 3/3y ~ h , 
it follows that 

ft B 2' • 'Bx J r 1 ' h"5- ( 4 0 ) 
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We Mist now compare the variation of the disruptive force given by 
eq. (40) with the variation of the confining force (tension) due to the 

2 curvature of the field lines. The tension is +B (3s/3s)/4n, where s 
is a unit vector tangent to a field line. We also have that 
I * I -1 -1 
|3s/3s| = (radius of curvature) = A for highly deformed field lines. 
Therefore, in the space between a and b we obtain the relation 

2 
|B2(3s/3s)| « B A X

_ 1 « h" 2. (41) 

A comparison between eqs. (40) and (41) reveals that the magnetic-pressure 
gradients (disruptive) decrease with altitude faster than the tension of 
the field lines (confining)• Hence, the inflation of field lines will 
eventually stop. 

The gas, of course, contributes its share in limiting the inflation of 
the field lines. This is done both by holding the field lines down with 
its weight at the position of the valleys and by resisting unlimited 
compression along field lines due to its finite temperature. At equilibrium, 

2 the gas density varies with altitude, y, as expf-g y(x,A)/C ] along a field 
line characterized by the value A of the magnetic potential. Thus, the 
field does not turn into an exact vacuum field at any finite altitude. 
2. Soae Features of the Final States 

In Paper I we presented three final states having the same vertical 
but different horizontal wavelengths, and we discussed their features in 
detail. We had taken « « 1 in the initial state, a value which Parker 
(1969a) finds reasonable on observational grounds. We suggested that 
final states represented "large-scale" condensations of the interstellar 
gas in valleys of the field lines. The scale, of course, is determined 
fro* Parker's (1966) instability criterion, if the interstellar medium 
has ever existed in the stratified state. But Parker had suggested that 
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horizontal wavelengths as small as 10 pc and as large as 1000 pc could 
grow. The critical wavelength in the horizontal direction is given by 

A„ = 4 * i/ 2 . a > 0. (42) 
x (2a + l ) 1 " 

Therefore, A is expected to be several times larger than the initial 
scale height H, which is about half the scale height of a typical final 

2 state. Since observations reveal a scale height — 10 pc today, wavelengths 
smaller than a few hundred parsecs will not grow, even when cosmic rays 
are included (see f VBSd below), unless a is unusually large. This is 
the origin of our terminology "large-scale condensations". 

The following are some of the aain characteristics and implications 
of our final states. 

a. Scale Height 
i. Gas. 
Compared with that of the corresponding initial state, the scale 

height of the gas in a final state increases at the position of the 
valleys, where the field is compressed (see isodensity contours of 
figs. 2a, 2b and 2c of Paper I). This is so because matter accumulates 
in the valleys mainly due to motions along field lines rather than due 
to a vertical compression. On the other hand, the scale height of the 
gas decreases at the wings of the condensations. For wavelengths within 
± 20% of the wavelength corresponding to the maximum growth rate, the 
scale height of the gas at the valleys is 1.5-2.7 times that at the 
wings. The observed "high latitude gas" in the Galaxy may be nothing 
more than the high altitude matter indicated by the rise in the iso­
density contours of figures 2a, 2b and 2c of Paper I. This is in 
contrast with the traditional interpretation of the high latitude gas as 
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matter raised by inflated field lines during the development of the mag-
netogravitational instability. A significant amount of matter is not raised 
by inflated field lines. Field lines inflate only because, (and only as 
fast as) gas can drain away from their raised portions. (When all is 
settled, at any point in the region where inflation occurred, the density 
in a final state is smaller than that in the initial state.) If the magnetic 
pressure gradient remained undiminished during the expansion process, it 
might be able to lift a significant amount of matter to higher altitudes. 
It is the case, however, that expansion takes place at the expense of 
the forces that initiated it; that is, magnetic energy is released during 
the expansion. Matter which was originally at large y's travels down 
steeper field lines. It may, therefore, reveal itself as relatively 
rapidly falling gas above large-scale condensations in the interstellar 
medium. Since the e-folding time of the magnetogravitational instability 
is ~ 10 years, the high altitude gas would be depleted by now unless 
some mechanism replenishes it. We shall suggest that the mechanism which 
periodically triggers the instability may also be responsible for re­
plenishing the high altitude gas (see S VBSe below). No additional 
assumptions are necessary. 

ii. Magnetic Field. 
Fig. 3 exhibits the variation of the field, B f(x,y), with y 

at x - 0 (valley) and at x - X = X^2 « 15 C 2/g (wing) of the final 
state of fig. 2c of Paper I (hereafter referred to as state c). On the 
same graph we plotted the field of the initial state, B i(y), for comparison. 
All values are normalized to B.(y • 0). It is evident that although the 
field at the valley, B f(0,y), starts out larger than the field at the 

2 wings, B.(X,y), it decreases more rapidly. For y > 3 C /g, it becomes 
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smaller than B.(y). Also, for y > 5 C /g, it is smaller than B f(X,y). 
The scale height of the field at the valley has decreased to about 2.9, 
and at the wings to about 3.5 compared to that of the stratified initial 

2 state, in which it was equal to 4.0 (units of C /g). Thus, the individual 
scale heights of the gas and field change in the same direction at the 
wings of a condensation and in opposite directions at the valleys, where 
matter accumulates. Since observations of synchrotron radiation indicate 
a scale height of the field larger than that of the gas, our solutions 
suggest that the radiation may be produced mainly at the wings of the 
condensations. We shall return to this point when we consider cosmic 
rays ( I VB5d). 

The above dependence of B,(0,y) and B.(X,y) on y is a direct 
consequence of flux conservation. The total magnetic flux between the 
x-axis and y « Y = \ /2 < » is fixed. Therefore, the areas under the 
curves B.(0,y) and B-(X,y), 0 < y < Y, must be equal. Since B-(0,y) 
exceeds B-(X.y) for small y, it must decrease below B.(X,y) beyond some 
finite value of y. 

b. Gas density. 
The reflection symmetry about the galactic plane implies that the field 

line originally coinciding with the x-axis will always do so during the 
development of the instability. we recall that g has only a vertical 
component and that magnetic forces do not act along field lines. Con­
sequently, the gas density will be uniform along the x-axis, even though 
its value will be different, in general, in the initial and final states. 
Will pf(x,y»0) be much larger than p^O)? 

It has been a tacit assumption in all work on the magnetogravitational 
instability that the final central (that is, x • 0, y • 0) density of a 
condensation will be much larger than P.(0). Even star formation resulting 
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from a very large increase in gas density at the valleys has been 
contemplated. Yet, our solutions show that the final density on the x-axis 
is smaller than, and within a few percent of, its value in the stratified 
initial state. This is so because if the density increases at the valleys, 
where vertical compression takes place, the resulting increase in pressure 
is unopposed along the x-axis. Therefore, matter has to move out of the 
compression region (along the x-axis) to relieve the pressure gradients. 
The fractional increase of the cross-section of a flux tube at y ~ 0 
is larger at the wings than the fractional decrease taking place at the 
valleys. Therefore, the mean gas density in the tube will drop. But 
since the density must be uniform on the x-axis, it will always be equal 
to the mean density there. Thus, the density on the*x-axis in a final 
state will be smaller than that in the corresponding initial state. This 
decrease in density is very small because the deformation suffered by a 
field line neighboring \.he x-axis is small. This effect is seen clearly 
in fig. 4, which shows pf(x«0,y) and p-(x=X,y) for state c, and p.(y). 

The dependence of the density on y at any x is indicated by the 
isodensity contours of figs. 2a, 2b, and 2c of Paper 1. 

A directly observable quantity in those external galaxies which are 
seen nearly face-on is the column density cf the gas if the gas is 
predominantly neutral, or the "emission measure" if the gas is mainly 
ionized. Our solutions predict a contrast between the maximum and minimum 
values of these quantities in the range 1.4 : 1 to 3.0 : 1 for wave­
lengths within ±20% of the one corresponding to tha maximum growth rate 
(see fig. 3, Paper I). (In the case of ionized gas, a fixed degree of 
ionization is assumed throughout the system.) The curves for the emission 
measure may represent those for the column density within at most 18% 
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because a. varies nearly exponentially with y at a fixed x, at least for the 
first few scale heights, where most mass is found. Thus, the integrals 
" H(x) = / dy pf(x,y) and E (x) £/ dy pt(x.y), normalized to those of the 
initial state, will (almost) differ by a multiplicative constant « 1. 

c. The ratio (a) of the magnetic pressure to the gas pressure. 
We assumed that a = 1 everywhere in_ the initial state and we determined 

final equilibrium states some of which were discussed in Paper I. Parker 
(1969a) interprets the observations as suggesting a value of a close to 
unity. One uses the observed values of H, C, and g in eq. (37) in order 

4 to obtain a. This is misleading conceptually. The e-folding time of 
the magnetogravitational instability is about 10 years. Therefore, 
observations carried out today will reveal values for H characteristic 
of some final state rather than of the assumed initial state. We have 
seen that the scale height of the gas varies typically by a factor of 2 
in going from the midplane (x • 0, y > 0) to the wings of a condensation. 

In a final state (for example, state c) a varies considerably with 
position even though it was taken equal to unity everywhere in the initial 
state. At x - 0, it decreases rapidly with y from its maximum value of 2 
(see fig. S), while at x » X, the opposite is true. Such a quantity as 
an "average" a is meaningless. Since observations may give only a mean 
value of the field and of the gas density along a line of sight, the most 
one may extract from observations is the quantity 

a - < B > 2 / 8 w < P > . (43) 

4. If g is taken as a linear function of y (as is actually the case for 
the first one or two scale heights in our galaxy), the mean value of g 
over the first scale height oust be used. If cosmic rays are included, 
eq. (37) is replaced by equation (50), with the quantity B given by 
eq. (48). The point of our argument does not change by these considerations. 
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Faraday rotation measurements give <B,,> weighted by the number density 
of thermal electrons along the line of sight. Observations of synchrotron 

1 8 radiation may give^B," > weighted by the number density of rclativistic 
electrons. To obtain B itself, some assumption concerning the structure of 

the emitting region is necessary, [Note that a is not the same as the 

"average" o defined by < o > = V" / dV a(x,y), where dV is a volume 
element.] The quantity a (not a itself) is near unity, indicating a 
large-scale "equipartition" between the energies in magnetic fields and 
in random motions of gas. Biermann and SchlUtcr (1951) advocated such 
large-scale equipartition on theoretical grounds (see also Parker 1969a, 
1969b). 

It should be unnecessary to remark that eq. (43) does not imply the 
2 relation B « P; unfortunately, this relation is often used and justified 

"on observational grounds." Neither observations nor our calculations 
(see fig. 5) imply that a itself is constant in the interstellar medium 
today. 
3. Dependence on the Assumed Initial State 

We have used as an initial state the stratified state suggested by 
Parker (1966) in order to keep contact with previous work on the subject. 
We do not suggest that the interstellar medium must have existed in such 
a state. As emphasized in Paper I, our final states depend on the initial 
state only in that they have the same mass-to-flux ratio in their various 
flux tubes. If this ratio may be obtained from observations, our formalism 
and method of solution of the MIS equations can be used to determine 
equilibrium states of the gas and field in the galactic gravitational 
field without reference to any particular initial state and without 
reference to the magnetogravitational instability. 
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4. Comparison with Observations 
In Paper I we compared the calculated final states with observations 

in the solar neighborhood. We argued that the topology of the magnetic 
field, the distribution of the interstellar gas, and the observed gas 
notions can be understood in terms of, and can be taken as evidence for, 
the nagnetogravitational instability. The sun is located at an estimated 
distance roughly equal to X /3 from the "center" of the. large-scale 
condensation observed at 1 = 40 . A second large-scale condensation is 
located it 1 « 250° at a distance ~ 2 A /3 fron the sun. The horizontal 
separation between the "centers" of these two condensations is X « 1/2 kpc. 

The observed gas notions indicate that natter is still sliding down 
the defomed field lines. Note that if the sun's Ideation were equi­
distant fron the two condensations, zero velocities would be predicted 
at a latitude b - 90° because a line of sight at b ~ 90° would intersect 
all field lines at right angles. With the sun's position as described 
above, however, the naxinun velocities are expected to be observed at 
b ~ 90° because for these latitudes the line of sight forms the smallest 
attainable angle with highly deformed field lines. At intermediate and 
lew latitudes, gas sliding toward a valley of the field lines from both 
sides will reveal itself in both positive and negative velocity (with 
respect to the velocity of the center of the condensation arising due to 
the rotation of the Galaxy as a whole}. Because field lines close to 
the Galactic plane do not deform very much, low latitude local gas is 
expected to exhibit smaller velocities than the high latitude gas, 
which is falling freely through large distances. 

Clearer evidence for the magnetogravitational instability is expected 
in spiral galaxies seen nearly face-on if spiral density shock waves 
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trigger the instability. Rots (1974) observed the column density of 
hydrogen along the spiral arms of M81 with a resolution of 400 x 800 
pc. As his figure 12 shows, the spiral arms are broken up into many 
clumps of matter at fairly regular intervals of about 1 kpc; this is 
in accordance with our expectations based on the development of the 
magnetogravitational instability in an interstellar medium in which 
a ~ 1 (see Paper II). Typically, the observed ratio of the maximum to 
the minimum column densities is somewhat less than 2, as predicted by 
fig. 3 of Paper I. Since the observations were performed along a theo­
retical spiral, rather than through the actual maxima of hydrogen 
emission, the full contrast in column densities between maxima and 
minima is not revealed in all cases. (Also, not all condensations are 
well resolved.) A repetition of the experiment with this particular point 
in mind and with a better resolution would be very useful. 

To model a particular condensation one must know how its mass is 
distributed among its flux tubes. Until high resolution observations 
of the gas and field may yield information on that matter, any comparison 
with observations will, of necessity, be of a semi-quantitative nature. 
Our calculated final states predict that the interstellar medium, at least 
along spiral arms, would exhibit the following characteristics: 

i) The gas will be broken up into clumps of matter at fairly 
regular intervals larger than a few hundred parsecs. For a~l, the most 
likely separation is in the range 500 pc - 1000 pc, the lower limit being 
allowed by the fact that the observed scale height may be twice that of 
the initial state. 

ii) The contrast in column densities between maxima and 
minima will be roughly in the ratio 2 : 1 . A similar contrast is expected 
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between maxima and minima of the emission measure if the gas is pre­
dominantly ionized. 

iii) There will be an intimate association between the inter­
stellar gas and field. Yet, the scale height of the gas is maximum 
where that of the field is minimum (that is, at the valleys) and vice versa. 

Further consequences of the development of the magnetogravitational 
instability along spiral arms are discussed in Paper II. In particular, 
we suggest that cloud complexes, giant H II regions, and gravitationally 
unbound OB stellar associations may have their origin in the triggering 
of this instability by spiral density shock waves. 
S. Refinements 

Although we formulated (and described a method for solving) a very 

general problem in Paper I, the particular solutions presented may be 
restricted by some simplifying assumptions made. First, the gravitational 
field of the galaxy was assumed independent of y, the altitude above the 
galactic plane. Second, the magnetic pressure was taken equal to the 
gas pressure (that is, a - 1) in the initial state. Third, the gas 
temperature in a final state was assumed to be the same as that of the 
corresponding initial state. Fourth, the initial state was taken as the 
(unstable) equilibrium state proposed by Parker (1966). Fifth, the effect 
of cosmic rays on the final equilibrium states was neglected. How would 
our final states be modified if each of these assumptions is relaxed? 
Ne argue that changes will be of a quantitative, rather than a qualitative, 
nature - contrary to Parker's (1968b) suggestion that cosmic rays pre­
clude final equilibrium states. 

a. k gravitational field varying with altitude. 
The vertical component of the Galactic gravitational field, g(y), 
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deduced from observations of -he motion of K giant stars, is plotted 
against y in fig. 6, taken from Oort (196S). For altitudes smaller than 

-9 
two scale heights, g(y) increases almost linearly from 0 to S * 10 

2 cm/sec . For the next 10 - 15 scale heights, g(y) increases only by an 
-2 additional factor of 2. It must decrease as y eventually. So, our 

solutions might be expected to change at least close to the Galactic 
plane and at very large altitudes because g(y) cannot be approximated 
by a constant there. In the region where g increases with y, one might 
expect the new final states to have field lines somewhat more deformed 
compared to those of the constant g case. This is so because a gas element 
is heavier the higher it is along a deformed field line, so that drainage 
of gas into valleys is likely to be more efficient. On the other hand, 
the almost vanishing g close to the Galactic plane will give rise to 
small gravitational forces that can be balanced by small pressure gradients 
along the slightly deformed field lines. Thus, gas drainage into valleys 
might be less efficient at small altitudes than it was in the constant 
g case. 

The inverse-square.dependence of g on y at very high altitudes 
indicates that the deformation of field lines in this region may be much 
less than before. 

On the basis of these intuitive arguments one might speculate on the 
expected dependence of the magnetic field and the gas density on position; 
but one's intuition cannot substitute for quantitative calculations. Ne 
shell, therefore, refrain from further speculations. If and when 
observations allow the determination of the mass-to-flux ratio in the 
flux tubes of the system, solution of eqs. (10)and (12) of Paper I with 
a more realistic g will be necessary (and straightforward). Then a 
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detailed, quantitative comparison with observations would be possible. 
b. Alpha larger than unity. 
In Paper I and in S VB2 above, we pointed to observational evidence 

suggesting that the critical horizontal wavelength for the magneto-
gravitational instability is a few (3 or 4) hundred parsecs. The 
horizontal wavelength corresponding to the Maximum growth rate is about 
twice as large. Since the horizontal "width" of a condensation is in 
the range X / 4 - \_/2 (sen Paper I, i Via), it is clear that the magneto-
gravitational instability accounts most naturally only for condensations 

2 larger than 10 pc. Thus, we have two proposed mechanisms for cloud 
formation: (i) the thermal instability, which can account for dwarf 
clouds of dimension £ 10" pc; and (ii) the magnetogravitational 

2 instability that can produce giant condensations of dimension > 10 pc. 
What, then, is responsible for clouds of intermediate [or, "standard" 
(see Spitzer 1968a)] size? 

Equation (42) shows that, if a » 1, the critical horizontal wave­
length (A ) for the magnetogravitational instability becomes comparable 
to, or smaller than, the combined scale height (H) of the gas and field 
in the initial state. It might be tempting to suggest that this is the 
manner in which "standard" clouds form, namely, that the magnetogravitational 
instability develops in a cold gas for which a >• 1. There are some 
difficulties with this picture. First, Faraday rotation observations 
yield a large-scale magnetic field of a few microgauss. So, one does 
not have the freedom of achieving large a's by assuming a much stronger 
field. An additional restriction on a and the gas temperature (T) is 
imposed by the requirement that H remain reasonably close to the scale 
height observed today. For H to remain nearly fixed while a and T vary, 
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one must have the approximate proportionality (see eq. [37]) 

o « C" 2 - T" 1. (44) 

Since the magnetic field must also remain nearly fixed, we' have the 
additional relation 

a « P"1. (45) 

Combining relations (44) and (45), we obtain 

P « T. (46) 

Equation (46) states that, in order for alpha to increase appreciably, 
the interstellar gas must cool nearly isochorically. In S IIA2, we 
discussed the possibility that standard clouds might form through the 
development of a thermal instability in an interstellar medium cooling 
isochorically. We concluded that much smaller condensations are favored 
for times less than —10 years. Ne now ask: if indeed large ot's are 
achieved because of isochoric cooling, woulc the magnetogravitational 
instability account for standard clouds? 

Ne may obtain a hint on the nature of the answer to this question 
if we compare the tension of the field lines with the galactic gravitational 
force exerted on the gas. Since wavelengths smaller than H are now 
favored (see eq. [42]) we may write for the radius of curvature of a 
typical field line R ~ X > KH, where * is a positive constant smaller than 
unity. Then the ratio of the tension of the field lines to the gravitational 
force is 

|B2(»V»S?I _ _si_ _L . B2 i_ m 2 1 ( 4 7 ) 

4 w p g 4 « R pg 4«KJ4Pg < 

where we made use of the equation H as a C /g for cs » 1. Equation (47) 
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suggests that, even if the horizontal wavelength is as large as the scale 
height (that is, K = 1), the tension of the field lines might prevent 
large deformations. Hence, final equilibrium states are expected to have 
field lines only slightly deformed. The deformation would be smaller for 
smaller wavelengths. As a consequence, the density contrast between the 
valleys and the wings of a condensation is unlikely to be very large, 
casting doubt on the original proposition that the case a » 1 might 
produce standard interstellar clouds. Yet, this possibility (and 
especially the case a > 1) should not be dit.nissed without an exact 
equilibrium calculation. 

Ne note in passing that Heiles (1968) found an abnormally small number 
of clouds with masses 24 - 280 KU. This "gap" may not be unrelated to 
the gap in wavelengths that separates the realms of thermal and magneto-
gravitational instabilities. 

c. A non-isothermal equation of state. 
The result discussed in S VB2b, that the gas density is uniform along 

the x-axis, night be a consequence of the assumption that the gas is iso­
thermal. Suppose then that some other equation if state, such as P = P ( P ) , 
is used. The gas pressure must still be uniform along the x-axis because 
there are no other forces available to sustain any pressure gradients. 
Ne must, therefore, have that ? P • (dP/dp) $ p * 0. Clearly, the 
possibility now arises that there may be density variations along the 
x-axis. T, 'V necessary and sufficient condition is that dP/dp = 0 for 
some ("critical") value of p; that is, a "phase transition" (an increase 
in density at a constant pressure) must take place. 

If such "phase transitions" (see also I IIA1) are permitted, two new 
effects may appear. The first one is that small elements of dense gas 
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•ay fora (by a themal instability) and be collected in the valleys 
because they "see" an external potential well (see Table 2, Paper I), 
into which they may fall by sliding along field lines. If small-scale 
condensations form, or pre-exist, ir the interstellar medium in which the 
magnetogravitational instability develops, they will be accelerated 
along deformed field lines giving rise to ordered motions of interstellar 
matter. There exists observational evidence for such motions (see § IIB). 
The second effect that may appear due to a general equation of state is 
that forced (or, driven) "phase transitions" may occur as the gas 
accumulates in valleys of the field lines. Such transitions may not 
suffer from the limitations of the thermal instability. In particular, 
the (short) cooling time of the interstellar gas need not determine the 
range of most unstable wavelengths, which will be appropriate to the 
•agnetogravitational rather than the thermal instability. The rate of 
forced "phase transitions" will be limited by the speed with which gas 
slides down the deformed field lines. This may be comparable to the speed 
of sound in the intercloud medium; that is, about 10 km/sec. Several hundred 
parsecs of intercloud medium may undergo such transition within a few 
times 10 years. Under these circumstances, p may be much larger than in 
the isothermal case at the position of the valleys. How much denser the 
condensations may become can be answered only by solving the problem 
formulated in Appendix A of Paper I. 

Appealing as the above scenario may be, the difficulty still remains 
that if a flux tube close to the x-axis is only slightly deformed, then 
only a small increase in density (if any) will result. Therefore, for a 
"phase transition" to occur close to the galactic plane, the gas density 
in the initial state must be close to the critical value. Although this 
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cannot be excluded from observations, such an assumption would severely 
restrict the theoretical appeal of the original, general proposition, 
that the magnetogravitational instability might lead to denser condensations 
if a non-isothermal equation of state is used, 

d. The effect of cosmic rays. 
i. Modification of the instability criterion. 
In his stability analysis of the stratified initial state 

Parker (1966) studied the effect of cosmic rays by assuming that 

B = P /P • a constant. (48) 

The cosaic rays tend to destabilize the system. On the one hand they 
increase the initial growth rate of an unstable perturbation, and on the 
other hand they decrease the critical wavelengths for the instability. 
The new instability criterion, is 

** > A x S 4»HtU(l+a+B-Y)Cl+a+g) - J C49a) 

where u • A' /A < 1, and the combined ("total") scale height of the gas, 
field, and cosmic rays in the stratified initial state is given by 

H t « (1 • o • B) C 2/g. (50) 

The quantity Y is defined by y • d In P/d in p. (Note that eqs. [49a] 
and [49b] reduce to eqs. [31] and [32] of Paper I if y « 1 and 6 * 0 . 
Parker [1969a] argued on observational grounds that B is close to unity.) 

It is straightforward to understand why the cosmic-ray gas has 
a destabilizing effect. Under small-amplitude deformations of the field 
lines the volume of a flux tube remains fixed in the special geometry 
under consideration (Parker 1966; Ames 1973). From the discussion of 
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S IVA2, it follows that not only is the cosmic-ray pressure constant on 
a field line, but it is also a constant of the motion for small-amplitude 
disturbances. As field lines deform, in order to equalize their pressure 
along field lines, some cosmic rays "squirt out" of the valleys, where 
the cross section of flux tubes decreases. Then the already inflated 
portions of field lines expand further not only because of the magnetic 
forces there (see S VA1), but also because of the gradient of the cosmic-
ray pressure normal to the field lines. With the additional driving force 
due to cosmic rays the instability proceeds at a faster rate. Also, 
because cosmic-ray pressure gradients aid the magnetic pressure forces 
against the tension of the field lines, smaller horizontal wavelengths 
nay become unstable. 

ii. Formulation of an equilibrium problem. 
In our calculation." of final equilibrium states of the gas and 

field in a galactic gravitational field, we ignored cosmic rays consistently. 
Ne did so for several reasons. First, the study of the nonlinear inter­
action between magnetic, gravitational and pressure forces is involved 
enough without additional complications. Second, uncertainties in the 
origin and in the rate of production and "destruction" (or, loss) of cosmic 
rays render any adopted relation between P and n that is supposed 
to remain valid for about 10 years a matter of faith or personal oias 
as much as a matter of "observational evidence." Finally, the cosmic 
rays are not necessary for driving the magnetogravitational instability. 
The physics of the instability and of the final equilibrium states be­
comes better understood if complications are introduced in some hierarchical 
order of importance. 

Parker (1965a, 1968b) suggested that the presence of cosmic 
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rays precludes the existence of equilibrium states. If such is the 
case, the practical importance of our solutions would be reduced con­
siderably. They would represent only the states toward which the system 
may tend after the "bubbles" of cosmic rays and magnetic fields may break 
off and leave the galactic disk, as described by Parker. 
[Nevertheless, the predictions made on the basis of the equilibrium states 
(S VB2) would still be the only ones available for an interstellar medium 
in which the magnetogravitational instability develops.] Clearly, Parker's 
arguments warrant a critical evaluation. 

The conclusion that cosmic rays may cause an unlimited inflation 
of the field lines depends crucially on two assumptions. First, some 
field lines protrude from the surface of a conducting galactic disk into 
a_ vacuum region. Second, a copious supply of cosmic rays within the disk 
keeps their pressure fixed iji all protruding flux tubes at all times. The 
first assumption does not apply to the problem at hand: the gas density 
decreases exponentially with altitude, and there is no "surface" with 
protruding field lines. As for Parker's second assumption, it is very 
difficult to determine with direct arguments whether in a real galaxy the 
cosmic-ray pressure is a constant of the motion. It is clear, however, 
that the cosmic-ray pressure within a flux tube, which undergoes considerable 
expansion in 10 years (the e-folding time for the magnetogravitational 
instability), will decrease unless a source supplying cosmic rays 
copiously in this flux tube is available. Although such sources might 
be available close to the Galactic plane, it is doubtful that they exist 
at altitudes larger than a scale height. An examination of figs. 2b and 
2c of Paper I shows that these are the altitudes at which the highly 
deformed flux tubes lie. These flux tubes are the first whose expansion 
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will be limited by the increasing curvature of the field lines, possibly 
leading to equilibrium states. 

In what follows we shall assume that the total number (rather 
than the pressure) of cosmic rays in each flux tube remains fixed (or at 

7 
least quasi-steady) over 10 years or so. and we shall explore the con­
sequences of this assumption. Since protons whose energies exceed a few 
Gev contribute most of the cosmic-ray energy, we consider all cosmic rays 
as highly relativistic and we relate their pressure, mass density, and 
number density by (see eqs. [16] - [18]) 

A/1 
(51) 

where b is a positive constant. 
We may proceed in a manner identical to that of S VB1 to prove 

the following equilibrium theorem. Jtf the magnetic field lines are held 
down by the gas in two regions separated by a_ horizontal distance X , then 
a_ quasi-steady number of cosmic rays in each flux tube will not cause an 
unlimited inflation of the field lines in the space between the two gas 
condensations. The tension of the field lines eventually exceeds the 

cosmic-ray pressure gradients. 
_2 Equation (41) shows that the tension force varies as h The 

cosmic-ray pressure varies as 

pcr - »T • v " 4 / 3 - h " 4 / 3 ; i«> 

so that its gradient normal to the field lines is 

\*J„\ « h"?/3 • (S3) 
Therefore, the ratio of the (confining) tension of the field lines to the 
(expansive) cosmic-ray forces varies as 
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la^iaiZasil . h*i/3 > ( S 4 ) 

revealing that the inflation of field lines will eventually stop (qed). 
A "typical" field line in a final equilibrium state is expected 

to deform in such a manner that its radius of curvature, R, is comparable 
to the horizontal wavelength of the mangetogravitational instability cor­
responding to the maximum growth rate, that is, R ~ A — 1 kpc. Only then 
will the tension of the field lines stop the inflation. Thus, the above 
equilibrium theorem would provide for a fat radio disk of half-thickness 
~ 1 kpc in a quasi-steady state. 

The compression of the field at the valleys of the field lines 
might lead one to expect that the synchrotron emission will be larger 
there than in the wings of a condensation. We recall, however, that the 
maximum field at the valleys is larger than that at the wings by less 
than a factor of 2, and that B decreases with y faster at the valleys than 
at the wings (for example, see fig. 3). When this is combined with our 
suggestion that, at equilibrium, cosmic rays will "squirt out" of the 
valleys in order to equalize their pressure along field lines, it follows 
that the expected contrast in synchrotron emission between valleys and 
wings will be reduced and, perhaps, even be inverted (in galaxies seen 
nearly face-on, of course). Quantitative estimates may be obtained by 
solving the equilibrium problem which we now formulate. 

We collect the WIS equations describing the system consisting 
of a highly conducting, isothermal gas, a large-scale magnetic field, 
and a hot and tenuous (p„_ •* 0, C „ •* •) cosmic-ray gas in a (known) 

cr cr 
galactic gravitational field (see 5 IVA): 

- vi> - ft - pv> • j" * 1/c - 0 (S5) 
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J . v> cr 0 

p = P C 2 

p 
cr 

= b n 4 / 3 

cr 

? x * = (4 */c) + 

B = ? x X 

(56) 

(57) 

(58) 

(59) 

(60) 

Note that the quantity j has a contribution from the cosmic rays (see 
eqs. [21c], [21d], and [65]). We are faced with a system of six equations 
with seven unknowns I Even worse, of the six equations only five express 
relations among the seven unknowns; eq. (56) merely states that P is 
constant on a field line, that is 

•>„ " Pcr< A> : «» 

but it does not specify the value of this constant, which is different on 
different field lines. In going from the MHD to the WS equations we 
have lost some equations, which are satisfied identically for static 
conditions with no bulk motions. These are eq. (5), expressing conservation 
of mass for the thermal gas, and eqs. (9) and (19), which describe the 
assumption that the thermal gas and the cosmic ray gas are tied to the 
magnetic field. To solve the MHS equations one must relate first P and P 
on the one hand with B (or. A) on the other. Ad hoc assumptions have been 
made by other workers at this point (for example, Parker 1968a, 1968b). 
We shall proceed in a methodical manner, as in i II of Paper I, 

We adopt the two-dimensional geometry us«!d by Parker (1966) -
see * VA1, and Paper I. We define a scalar function of position, q(x,y), 
by 

q « P exp(t|./C2)f (62) 
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and we write eq. (55) in'terms of A. q, and P as 

j ?A/c = exp(-*/C2) v"q + VP^. (63) 

By taking the inner product of both sides of eq. (63) with B and by 
using eqs. (24) and (56) we find that 

2 P exp(i|i/C ) = q - constant on a field line = q(A). (64) 

If we consider the components of both sides of eq. (63) in a direction 
normal to the field, it follows that 

i - exp(-,/C2) & • ^ 
(65) 

' < W c r > / c ' 
Now we may write eq. (59) in terms of A, q, and P by using eqs. (60) 
and (65): 

V 2 A(x.y) - -4* [ * a p e*p(-*/C2) • ? £ * ] . (66) 

The solutions of eq. (66) represent equilibrium states of our 
system. To obtain such solutions one needs to know q(A) and p

c r ( A ) . Since 
neither of these functions is a constant of the motion in the nonlinear 
flow associated with the magnetogravitational instability, it is not 
legitimate to calculate (or to specify) q(A) and p

c _ ( A ) in some initial 
state and then proceed to determine a final state characterized by the 
same q(A) and P (A). Both functions can and must be calculated from 
first principles given the manner in which field lines are loaded with 
thermal and cosmic-ray particles. 

A final equilibrium state is accessible to the system evolving 
away from the stratified initial state only if it has the same mass 
and the same number of cosmic rays as the initial state in each of its 
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flux tubes. If we can formulate Mathematically these two conservation 
laws and incorporate them into the MHS equations, it will be possible for 
a solution of eq. (66) to represent a final state that can be reached 
froa the stratified initial state through continuous deformations of the 
field lines under flux-freezing; the missing link will have been provided 
and the system of equations (55) - (60) will have been closed. 

We calculated q(A) in S lib of Paper I. It is given by 

0 
where X £ X./2, and all other symbols have their usual meaning. The 
integration is performed over x along a field line characterized by the 
value A of the magnetic potential. Since the mass-to-flux ratio, dm/dA, 
is a constant of the mot .on, we were permitted to calculate it in the 
initial state (see eq. [16] of Paper I). It is 

2 X p..(0) 
" 3 3 ^ B^O) L" 2 H t B.<0)J' (68) 

where the ("total") scale height, H , is given by eq. (50). Note that 
eq. (36), which relates P, B, and A in the initial state, is slightly 
modified by the presence of cosmic rays. It becomes 

rM = *!&! = f-Mrll2. = Isi^L m 1 [n ( y ) ]
4 / 3 

' l y j 8 w a 32 i o H | F ^ 0 l n c r l y j J 

(69) 
- olO) C2 exp(-y/H t). 

We may now calculate P.-(A) in a similar manner. The total 
number of cosmic rays, 5 N , in a length X of a flux tube [A, A + <A] 
is, by definition, 
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tX y(x,A*«A) 
6 H C T * J d x i d y ( x > A ) n

cr
Ix'y(X'A)]' ( 7 0 ) 

-X y(x,A) 
Ne consider x and A as the independent variables. Since the integration 
over y is performed with x fixed, we may change variables from y to A by 
using the relation 

dy « dA (3y/3A). (71) 

We eliminate n in favor of P c r by using eq. (58) and we perform the 
trivial integration over A to find that 

Solving eq. (72) for P and taking the limit 5A + dA we obtain 

'.«•» [ ^ /«/ - «**r • ™ 
The quantity dN /dA is easily calculated from the initial state since it 
is a constant of the motion (by assumption). We have 

6 N « "cr.jtrt Xx 6 y 

«A BjCy) «y 
2 X n c r t l ( y ) r A V* 

BJT5) (." 2 H t B.(0) J 
2 X n .(0) r . -i-l 

• l t 5 e X P (- 3 y / 4 "t) I" 2 H* B i (0) J 
2 X , m r A 13/2 r yl 

' ~T^C0) [• 2 H t 6. <6>J [- 2 k t Bi(0)J • 
Thw, we may write 

dN C T(A) 2 X n c r ̂ 0 ) r A -.1/2 « ( A ) 2 X "cr.jW f _ A I 1' 2 

~5T~ " î Tol {' 2 H t B ^ O ) ] 
(74) 
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where the relations expressed by (69) have been used repeatedly. 
Equations (67) and (73) state that the functions q(A) and 

P (A), although constant along a field line, respond to qhanges in the 
shape of field lines (and in the volume of a flux tube). They are pre­
scriptions of how to calculate q and P at equilibrium if the distribution 
of Mass and cosmic rays in the various flux tubes is known now or was 
known at any time in the past. 

The thermal gas and the cosmic-ray gas differ in an important 
way. Since the cosmic rays are not subject to the gravitational field 
of the galaxy, the gravitational potential does not appear in cq. (73). 
Although this expression for P is valid only at equilibrium, the same 
expression may be used in a. time-dependent problem if the speed of sound 
Pv_) in the cosmic-ray gas_ is_ considered as infinite (see di-cussion in 
i IVA2). Then, as A(x,y,t) changes in time because of deformation of the 
field lines, the cosmic-ray pressure equalizes "instantaneously" along a 
field line and its new value is determined only by the (new) "specific" volume 
of a flux tube, as shown by eq. (73). 

Altogether, to find equilibrium states for our system, eqs. (66), 
(67), and (73) must be solved simultaneously under appropriate boundary 
conditions, such as those used in Paper I. We shall not solve this 
problem here, although the method used for solving the problem in the 
absence of cosmic rays may be used in this case as well with only a trivial 
modification. 

We remark that the cosmic rays contribute a current density, 
j , that acts in a direction opposite that of j (at least for a con-
figuration close to the stratified initial state). This is seen as follows. We 
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nay write from eq. (69) that 

Also, in the presence of cosmic rays eq. (IS) of Paper I is 

q^A.) = Pj(0) C 2 [- 2 H t B t(0)/A.] 2 ( a + 6 ) . (76) 

Equations (75) and (76) show that dP ./dA, and dq./dA have opposite 
cr,i *. x 

signs (A. is negative everywhere); hence, j and j io so as well (see 
eq. [65]). This is in conformity with one's intuition that cosmic rays 
should tend to expand the field lines and weaken the napietic field. 

e. A non-equilibrium initial state 
The calculated final equilibrium states have - mass-to-flux ratio 

in each of theii »iux tubes characteristic of Pa iter's (1966) stratified 
initial state. Ne alluded in I Vw3 that the magnetogravitational in­
stability may develop in a rather different initial state. In fact, if 
spiral density shock waves (Fujimoto 1966; Roberts 1969; Shu et al. 1973; 
Noodward 1973) trigger the instability, the initial state is likely to be 
a non-equilibrium one even if the interstellar medium in the region be­
tween spiral arms could be represented by Parker's initial state. The 
study of spiral structure and galactic shocks is beyond the scope of this 
work (for an excellent qualitative exposition of our present day knowledge 
on this subject see Shu [1973]). 

For the purposes of this discussion it is sufficient to state that the 
existence of a small-amplitude spiral density wave in the stellar disk of 
a galaxy may induce a shock front in the interstellar medium extending 
several kiloparsecs along the x-axis in the geometry which we have been 

2 using. The width of the shock layer along the z-axis is —10 pc. The 
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contrast in gas density between the postshock and preshock regions is 
usually less than 10 Oven in the absence of a magnetic field) and is 
achieved within ~10 years (for example, see Shu et al. 1972). Because 
the e-folding time for the magnetogravitational instability is ~10 
years, if galactic shocks are responsible for triggering the instability 
one mist consider as an initial state a non-equilibrium state representative 
of conditions in the postshock region before vertical readjustment takes 
place. Since we have determined final equilibrium states by solving the 
KHS equations in a dimensicmless form with a of the initial state being 
the only free parameter in the equations (see Appendix C of Paper I), 
our results (for which a * l) will change only insofar as in the post-
shock region a isay become different from unity. What the value of a 
is in the interarm region is not known in reality. It seems reasonable 
to assume, however, that a is only a fraction of unity there; otherwise 
""he magnetogravitational instability would develop with A ~ 1 kpc and 
would lead to condensations such as the ones which we have calculated — 
and which have not been observed in the interarm region (at least not yet). 

The coapeession in the galactic shock will increase such a weak a by 
the saae factor ( <, 10) as the gas density (see below). So, a is expected 
to be soaewhat larger than 1 in the postshock region. This will lower 
the critical wavelength for the instability (see eq. [49]) — and will 
introduce a perturbation in the z-direction with wavelengths well below 
the range of the disruptive effects of differential rotation. The in­
stability aay be initiated in this Banner. 

We claiaed in 5 VB2ai that the mechanism which periodically triggers 
the aagnetogravitational instability also replenishes the high altitude 
gas in the Galaxy. A simple calculation illustrates this point. We ignore 
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the magnetograviational instability and the effect of cosmic rays and 
we take B to be parallel to the x-axis, as before. We consider a plane, 
isothermal shock in the (x,y)-plane with z > 0 being the unshocked region. 
The gravitational field is that given by eqs. (31) and (32). In the un­
shocked region (state 1) the equilibrium quantities are 

PXM • P^O) exp(-y/H1) (77a) 

B^y) B^O) exp( y/2 H x) (77b) 

A x(y) * -2 H x B^O) exp(-y/2 H ^ (77c) 

Hj - (1 + 0 l ) C 2/g (77d) 
2 2 

a, • B. /8 i p . C • a constant. (77e) 

If adjustments in the vertical (y) direction are ignored for the 
moment, the (non-equilibrium) quantities behind the shock (state 2) will 
be related to those of state 1 by 

(78a) 

(78b) 

(78c) 

(78d) 

(78c) 

Equation (78b) follows from B 2 / P 2 * B./p., which is valid for one-
dimensional compression (for example, see Spitzer 1968a), and eq. (78a). 
To arrive at eq. (78c) one simply uses the definition B = dA/dy for this 
geometry. Equation (78d) states that we have not allowed vertical re­
adjustment yet, while eq. (7Se) follows from (78a) and (78b) and the 
definition of u. The constant < is in the range (1, 10] and is determined 

p 2 (y ) S * P x (y) 

B 2 (y) = K B x (y) 

A 2 (y) = •e Aj (y) 

H 2 
s 

H l 

°2 s K a. . 
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np class since the n flux i s much larger than the g° flux. Further­

more, in the Ap reactions we have found that the cross section for 

A p - K N N -t-pions 

is negligibly small , and we have taken it so in the total cross section 

measurement (Sec. III). 

We may estimate that the missing channels E°p-*E°P'^ ) and 

H°p-*H°nir (with or without additional pions) have cross sections 

roughly equal to the first two listed in Table V. 2. Then an estimate 

of the total inelastic g ° p cross section is 

total 
S°p inelastic = 2 5 * 5 mb 

cross section 

from i .5 to 12 GeV/c. 
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froa which it follows that 
a. P,(0) 
»1 " ^ I B T • (83) 

We would like to determine B,(0) in terns of K and quantities 
characteristic of state 1 only. First we substitute the definitions of 
H. and H, (eqs. [77d] and [79d], respectively) in eqs. (80) and (81). The 
result is 

,[8 « Pj(0) • Bj^O)] - 8 ir P 3(0) • Bj2(0) (84) 

and 

where 

[8 * P.(0) • B 2(0)] 8 « P,(0) • B 2(0) 
K i i B.(0) - - a B,(0), 

P,(0) 1 P,(0) 3 

1 3 (85) 

P„ - P n C 2, n « 1,2,3. (86) 

We solve eq. (85) for P,(0) and substitute in (84) to obtain, after soae 
algebra, the quadratic equation for B,(0): 

8 2(0) Bj(0) • B 3(0) 8 « Pj(0) - e[8 W PJ(0) • B2(0)]B,(0) - 0. 

(87) 

Reinstituting a., we find for the roots of (87) 

B,(0) . , 1/2 

.1/2 ( M ) 

• • A ~ 
a. 
•£- j[1.4«t 1(l»i l)] , / 2-l) 

where only the positive root was kept because the ratio B3(0)/Bj(0) aust 
be positive. 
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Using eqs. (81), (82), and (83) we find the following relations 
between the quantities of states 1 and 3: 

H, P,(0) B,(0) a. 2 K al i - K _i = K _i « c _L « l/r-Hj p 3(0) Bj(0) o 3 [1 • 4 K aj(l • c ^ ) ] 1 " - 1 
(89) 

f(K, Oj). 

Ne note that 

i[» o f<*» V " ! • C90) 

that is, H. • H.. This is as it should be since in the absence of a 
•agnatic field the scale height is determined only by the temperature of 
the gas and the gravitational field. On the other hand we have that 

lia f(r, a.) - 1 ; (91) 
R*1 * 

when there is no compression there is no change. 
The limit of very strong fields is of interest. Ne find that 

Urn f(ic, a ) - K 1 / 2 . (92) 

showing that the increase in the scale height that would result, if 
vertical relaxation without "buckling" of the field lines took place, 
varies only as the square root of the initial increase in gas density. 

For a reasonable range of parameters, that is, 

3 < K < 10 and . 0.2 < Oj < 1, 

eq. (89) yields that 
HJ/HJ - 1.2S - 2.S. (93) 

This is the basis of our suggestion that galactic shocks not only may 
trigger the magnetogravitational instability, but they may also replenish 
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the high altitude interstellar gas. Of course, if this is the manner 
in which the instability is initiated, the field lines will deform and 
gas will drain into the valleys of the field lines at the same time that 
a general vertical expansion may take place. The instability may proceed 
at a faster rate because of the external driving force provided by virtue 
of the fact that the initial state (state 2) is not an equilibrium one. 
The magnetic stresses, that led to the onset of the instability in the 
first place, are relieved by the inflation of the field lines with the 
result that the mean magnetic field along the x-axis behind the shock 
increases much less than eq. (78b) would predict. This may have some 
bearing on the predictions of the intensity of synchrotron radiation in 
spiral arms (see Paper II). 
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VI. SELF-GKAVITATING INTERSTELLAR CLOUDS 

A. Non-Magnetic Clouds: A Summary 

The calculations of Bonnor (1956) and Ebert (1955, 1957) on bounded, 

isothermal, gaseous spheres led to a criterion for gravitational collapse. 

The total Mass (M) of a cloud must exceed a critical value, which is a 

function of the cloud temperature (T) and the external pressure (P ), 

namely, 

C 4 

M > M - 1.2 , *" . j 2 . (94) 

(G P Q) ' 

where the isothermal speed of sound in the cloud is 
C - (k T/p m H ) 1 / 2 . (95) 

The quantity k is the Boltzmann constant, n\. is the mass of a hydrogen 

atom, and u is the mean mass per particle in units of m„. To account 

for the cosmic abundance of helium, one takes 

V » 1.27 in H I clouds ("He/nH - 0.1); (96a) 

• 2.33 in molecular clouds (n H e/2n H = 0.1). (96b) 

[Often we shall not distinguish among molecular, dark and dust clouds, 

to which we shall refer collectively as "dense clouds". Their relatively 

high densities and masses and their low temperatures ensure that they 

are self-gravitating. Their differences (for example, see Zuckerman and 

Palmer, 1974) are not relevant in the present discussion.] For conditions 

typical of H I clouds (T - S0°K) and of dark clouds (T * 10°K), and for 

a "standard" intercloud pressure5 (P Q - 1800 k), we find that 

5. The precise physical parameters of the intercloud medium (see 5 IIA1) 
are more important in the context of the present discussion than they 
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M c * 740 Mg for H I clouds; (97a) 

* 8.8 Mg for dark clouds. (97b) 

Since individual H I clouds with masses larger than 10 M Q are rare 

(Spitzer 1968a), one might conclude that the upper limit on cloud masses 

is set by the Ronnor-Ebert critical mass. Then, clouds observed to have 

•asses larger than M must, of necessity, be collapsing. Observations 

relate a different story. Massive II I clouds may not even be self-gravitating 

because they are not usually dense enough. In those cases in which 

gravitation is important, turbulence and magnetic fields co>'d aid in 

supporting a cloud, so that masses larger than M may not be collapsing 

(Mestel 1965; Spitzer 1968b). But even if the Bonnor-Ebert predictions 

were in perfect agreement with observations of H I clouds, the conclusions 

drawn would be very misleading. The scarcity of atomic-hydrogen clouds 

with masses larger than 10 M. has a plausible explanation unrelated to 

gravitational collapse. Massive clouds may become dense enough to shield 

their interiors from ultraviolet radiation, thus allowing atomic hydrogen 

to be converted to molecular hydrogen on the surfaces of grains (for details 

of this process see Solomon and Wickramasinghe 1969; Hollenback and 

S.(contd) were in our discussion of non-gravitating condensations. Direct 
observational evidence sets a lower limit on the intercloud temperature 
(> lOOO'K) on the grounds that the intercloud medium is not seen in 
21-cm absorption (for example, see Clark 1965), although Colvin 
et al. (1970) and Hughes et al. (1971) find somewhat smaller lower 
limits (300 - 800"K). An upper limit l< 4000°K) is set by the 
measured widths of 21-cm emission lines (Heiles 1968). However, 
Field (1973) used the observations of Radhakrishnan et al. (1971), 
which show no line widths less than 8 km/sec, to conclude that the inter­
cloud temperature is * 8000°K. He also noted that observations of 
extinction in the solar neighborhood indicate that the density of 
dust in the intercloud medium is < 1% of that in clouds. Assuming 
that the dust-to-gas ratio is fixed, he arrived at a density for the 
'intercloud gas < 0.2 cm'3. This yields P < 1600 k, a value not far 
from the "standard" one, which was derived theoretically (for 
example, sec Spitzcr and Scott 1969; Field et al. 1969; Hjcllming 
et al. 1969). 
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Salpoter 1971; llollcnback, Werner and Salpotcr 1971). As a consequence, 

a large fraction of the total mass of such clouds may be inaccessible 

to 21-cm observations. 

Indeed, observational evidence (direct and indirect) has shown that 

hydrogen in dense clouds is mainly in molecular form and that n is in 
"•> 3 4 - 3 the range 10 - 10 cm in most cases (see reviews by Carruthcrs 1970; 

Heiles 1971; Zuckerman and Palmer 1974). Other typical parameters of 

dark clouds are M £ 100 M„, D(diameter) * 1 pc, o (velocity dispersion 1 

Av (full line width at half maximum power/2.3) * 0.4 km/sec and, as 

mentioned above, T * 10°K. The discrepancy between observations and the 

Bonnor-Ebert predictions is more serious in this case: observed typical 

(not maximum) masses are at least a factor of 10 larger than M . If indeed 

some dark clouds have temperatures as low as 5°K (Heiles 1971), the dis­

crepancy between observed and predicted masses will be at least as large 

as a factor of 40. 

The possible presence of turbulence in dense clouds cannot by itself 

eliminate the discrepancy. It may increase by at most a factor of 2 the 

effectiveness of the thermal energy in balancing the gravitational energy 

in the virial theor.m because supersonic turbulence dissipates rapidly in 

shocks (for example, see Mestel 1965). In terms of eq. (94), M may in­

crease by at most a factor of 4. If the measured line widths are attributed 

solely to turbulent velocities, the resulting Mach numbers are usually 

larger than 2. Even if the scale (L) of a turbulent element were as 

large as the radius of a dark cloud, the dissipation time (L/o yj would be 

less than or equal to the free-fall time (Mestel and Spitzer 1956; Pield 1973). 

One is left with the disquieting responsibility of specifying how turbu­

lence is regenerated over such a short time scale. 
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The problem of finding a suitable means of supporting a dense cloud 

against self-gravitation is alleviated if one postulates that such clouds 

are not in equilibrium. Bulk radial motions (collapse or expansion) have 

been invoked to explain the large widths of spectral lines in dense clouds 

(Shu 1973b; Liszt et al. 1974; Goldreich and Kwan 1974; Scoville and 

Solomon 1974) . Expansion may take place after a cloud collapses and 

the newborn stars form H II regions. In general, the pressure of an H II 

region exceeds that of the surrounding neutral matter, whose density is 

comparable to that of the H II region but whose temperature is consider­

ably lower. [An excellent review of the dynamics of the expansion of II II 

regions is given by Spitzer (1968a, 1968b).] Since the expansion of 

clouds follows star formation in their interiors, expansion is not relevant 

to the problem at hand, namely, the determination of critical values for 

the physical parameters of a cloud that may lead to formation of stars in 

the first place. We shall find below that the Bonnor-Ebert critical mass is 

indeed an underestimate because of the presence of magnetic fields. Thus, 

some of the dense clouds which are now thought to be collapsing may not 

be doing so. But even if all dar'< clouds are collapsing, the argument that 

this would imply an unsavory high rate of conversion of interstellar 

matter into stars may be invalid because star formation may be an inef­

ficient process (see 5 VIIF3). 

In order to include the magnetic field properly in the pictur., we 

must reexamine the assumption of flux-freezing because the length scales 

which concern us here are two to three orders of magnitude smaller than 

those relevant in the discussion of S V. 

6. The subject of providing a theoretical explanation for the observed 
line widths is very controversial. He shall discuss it in § VII in 
the light of our equilibrium solutions for self-gravitating, magnetic 
clouds. 
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B. Flux-Freezing in Dense Clouds 

Although the decay time of the magnetic field due to Ohraic losses 

in cool, dense clouds (T ~ 10°K, L ~ 1 pc) is longer than 10 years 

(see formula in § HID, footnote 2), the diffusion of the ionized component 

and the field through the neutral matter may be important (Mcstel and 

Spitzer 19S6). The characteristic diffusion time over a scale L is 

where v. - v is the relative velocity between ions and neutrals. In a 

quasi-steady state, this is estimated by balancing the magnetic forces, 

which drive such motion because they act directly only on the ionized 

natter, with the drag provided through collisions with the neutral matter: 

Pi l̂ i ' * J / T S - |-VxCB2/8n) + B 2 9s74it3s|. (99) 

In eq. (99}, the magnetic force has been decomposed into a pressure part 

and a tension part in the usual manner. The quantity T is the "slowing-

down" time for an ion (usually carbon in H I clouds, and hydrogen in dense 

clouds) in a field of neutrals (predominantly hydrogen). It is given by 

(see Spitzer 1968a, p. 92) 
1 _ n 1 
T s mi Tcoll. 

(100) 
> JL n o. v. , m. n in in ' 

where a. is the ion-neutral collision cross-section and v. (~C) is the in m 
•ean random speed of neutrals relative to the ions. Thus, the diffusion 

time becomes _ 
L n. n m o. v. , i n . , 

l n n in in . (101) 
-$ (B"/8n) + B 3s/4ir3s| 
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Spitzer (1968a, p. 2-40) calculates T_ for an infinite cylinder of gas 
threaded by a magnetic field parallel to the ._ »s of symmetry. Ht> assumes 
that the density is uniform and that magnetic forces balance the gravita­
tional forces in the lateral direction. The result is 

T iH i" „ -A x (1 • 4 IL, /n,,)- 2. (102) 
D •)„ r „ » He' H 

2v 0 VL, n„ 
With T = 50°K (that is, v i H * 1 * 10 S cm/sec), m. = 12 m^, o i f J * 2 * 10" 1 4 

2 
cm , and accounting for the cosmic abundance of helium, this is 

t D * 5 K 10 ni^ nH v e a r s - C 1 0 3 ) 

Since n./n„ > 5 * 10" in H 1 clouds, it follows that T„ > 3 * 10 years. In*" u 
Hence, diffusion may be neglected. 

The degree of ionization in dark clouds is probably somewhat smaller 
than 10" ; if it were larger, long-range Coulomb collisions between electrons 
and H.CO molecules would excite the 6-cra line of H-CO and, thus, would 
quench the anomalous cooling of this line — contrary to many observations 
(see, for example, Zuckeruan and Palmer 1974). In typical (T ~ 10*K) dark 
clouds, therefore, the diffusion time may become as small as 10 years. 
This is still much larger than free-fall times at typical dark-cloud 
densities (x f f ~ 10 years). We nay, therefore, still assume that the 
magnetic field is frozen in the matter. 

Nakano and Tademaru (1972) calculated in detail the degree of ioniza­
tion in dense clouds of uniform density. At n > 10 cm' , for the massive, 

4 spherical cloud which they considered (M « 10 M~), ions are contributed 
40 by hydrogen due to ionization by cosmic rays and K radioactivity, and 

by heavy elements due to ionization by -rays with energy greater than 
1 kev. They concluded that, in a collapsing cloud, the diffusion time for 
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the magnetic field becomes comparable to the free-fall time if n,. ̂  2 x 10' 

cm . This is a significant result, but it is valid only as ait ordcr-

of-magnitude estimate because (i) spherical contraction is an unlikely 

possibility in the presence of a magnetic field; (ii) a self-gravitating 

(let aside a collapsing) cloud cannot possibly maintain a uniform density; 

and (iii) it is not clear a priori that the tension of the field lines 

(which was neglected) will be smaller than the magnetic pressure gradients 

in a highly compressed cloud with a frozen-in field connected smoothly to 

the field of the surrounding medium. At any rate, the question of how in 

the first place a cloud can contract to such a high density in the 

presence of a frozen-in field (and, possibly, rotation) is still one of 

the outstanding theoretical problems associated with star formation. It 

is this pre-collapse stage that interests us here. 

C. Magnetic Clouds: Background 

1. The Problem of Angular Momentum and "Magnetic Braking" 

If an interstellar cloud of typical dimensions rotates as slowly 

as to have always the same face turned toward the Galactic center 
g 

(period * 2 x 10 years), it is impossible to contract axisymmetrically 

to stellar sizes while conserving its angular momentum. If that happened, 

the star that would form would have a period of rotation of about 5 minutes 

and the centrifugal forces would exceed the gravitational forces by about 

three orders of magnitude (Spitzer 1968a, p. 231). 

It is, however, possible for a cloud to contract indefinitely while 

conserving its angular momentum if non-axisymmetric configurations are 

attained (Weber and Shu are investigating this process using the tensor 

virial theorem). To illustrate this point, we consider a cloud which is 

initially spherical with density p., radius R., and is rotating uniformly 
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2 2 with angular velocity fl.. Its angular momentum is J = y- MR. fi. -
Sir 5 
w p. R. 0.. If it attains a rod-like shape of uniform density p., 
radius r and length £ (r << I ) , it may rotate about an axis perpendicular 

1 2 to its axis of symaetry with angular velocity n, such that J = y=- Ml fi- = 
Is- p., I 3 (1,. The possibility arises that a cloud may contract without 

32 5 2 3 increasing its angular velocity (that is, fl, * fl,). Then, P2/Pi = x~ R i / r l 

and the density can increase arbitrarily as long as r remains much smaller 
than I. However, such a sequence of events can take place only if it 
satisfies the additional local constraints imposed by the force equation. 
Furthermore, such contraction would involve considerable compression of 
the interstellar magnetic field no matter what the relative orientation 
of J and S might be. It is, therefore, an unlikely possibility if the 
field is frozen in the matter, as the case seems to be. 

Since the magnetic field is expected to thread both a cloud and the 
intercloud medium, the rotation of a cloud twists the field lines and 
generates Alfven waves, that transport angular momentum. Mestel and 
Spitzer (1956) give the characteristic time for this process as roughly 
equal to the time it takes an Alfven wave (of speed v.) to travel across 
the cloud (of radius R,,)-' 

T J * R e i / v A • < 1 0 4 > 

More recent observations and calculations indicate a gas density in the 
intercloud medium typically two orders of magnitude smaller than that 
in clouds. The tenuous intercloud gas will tend to transport angular 
•omentum less efficiently than eq. (104) implies, while, if the Alfven 
speed in this medium is larger than in the cloud, it will tend to reduce 
T,. Ebert el al. (i960; see Spitzer 1968a, p. 243) consider the simple 
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case of the uniform rotation of a spherical cloud (of density p .) about 
an axis aligned with a uniform magnetic field, which thre&J". both the cloud 
and .he intercloud medium (of density p. ) , which is initially at rest. 

' IC ' 
The calculated decay time may be expressed as 

8 pat Rel ,.„, 
TJ = S 7T 7T- ( 1 0 5 ) 

ic A 
oud It must be emphasized that v, is the Alfven speed in the intcrcl 

.3 medium ( * 15 km/sec at B = 3 Mgauss and n = 0.2 cm ). If Rtf * 5 pc 
2 7 and P„,/p.„ * 10 , then T, » S « 10 years, which is larger than the 

oft XC %) 

cloud free-fall time by a factor of 4.2 (for n , = 20 era" ). We note, 
however, that x. is considerably smaller in the case of dark clouds, which 
are usually surrounded by envelops of matter of comparable density. For 
an order of magnitude estimate, we scale the magnetic field to dark-cloud 

3 - 3 K 

densities ( ~ 2 * 10 cm ) according to the relation B « p , where 
1/3 s K s 2/3 (see § VIIF). Then, v. decreases by at most a factor of 
4.64 (for ic = 1/3, which is the worst case; if K > 1/2, v. will increase 
upon contraction). Since p , „ P., in this case and since R , ~ 1 pc, we 

5 find that t, < 5 * 10 years. It is not surprising that dark clouds do 
not exhibit appreciable rotation. 

Even in the case of normal H I clouds, T, must be smaller than that 
given by eq. (105). The region of the intercloud medium which is directly 
affected by the rotation of the cloud has a radius r, > R -- eq. (105) 
contains the implicit assumption that r. = R ,. This is so because field 
lines neighboring the equator of the cloud bend is the cloud rotates and 
set the intercloud gas into a rotational motion. Equation (105) should 
be multiplied by a factor R-./*". (< 1), where r. is the distance from the 
axis of rotation at which the intercloud medium has received information 
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about the cloud's rotation in a time t; that is, r, * v. t. Within a 
time as small as 5 * 10 years, the intercloud medium within a radius 
of 75 pc from the cloud will be affected. There may exist an "Alfven 
cylinder", the surface of which rotates at a speed equal to v.. In such 
a case, and if corotation is established within the Alfven cylinder, we 
would have that R,o/r A

 = v , /v., where v . is the speed of rotation at 
the cloud equator. Since observations limit v < 1 km/sec, T, may have been 
reduced by more than a factor of IS, down to a few times 10 years. This 
possibility warrants a more careful investigation in the future. 

It oust also be emphasized that since observations show that the 
magnetic field is predominantly parallel to the Galactic plane, it is 
more likely that the axis of rotation of a cloud will be perpendicular 
to the field. With the field lines tied to the interrloud medium and 
the field frozen in the matter, corotation is unlikely in this case, and 
the magnetic braking of the cloud's rotation may be more effective than 
in the case in which J was parallel to B. It is possible that the magnetic-
field completely prevents the period of rotation of a cloud from falling 
below that of the Galactic rotation, so that there is no relative rotation 
bet'»?en the cloud and the field. If that is the case, the equator of a 
c.t.oud of radius S pc would rotate with a speed of only 0.16 knt/sec. 
Observations do not exclude such motion. 

In summary: in the absence of a maj etic field, the angular momentum 
problem may be bypassed by non-axisymnetric contraction. This is an un­
likely evolutionary course in the presence of the interstellar field, 
which, however, may reduce the angular momentum of a cloud ,'ignificantly 
in a time comparable to the free-fall time. Since flux-freezing appears 
to rest on solid foundations at least in the pre-co11apse stage (and 
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possibly for some time after collapse sets in), the equilibrium ;md 

stability of magnetic clouds must be studied in greater detail. 

2. Non-Equilibrium Calculations 

a. Mestel's Spherical Model 

Mestel (1966) considered the spherical contraction of an iso­

thermal cloud out of a background medium of uniform density, p. , perme­

ated by a uniform magnetic field B.. He assumed that the density at a 

radius r is given by 

p(r) - p. • p c ex[,["(r/r0)2] . (106) 

The quantity r_ is a radius beyond which p decreases rapidly to its back­

ground value, and the central density p(0) * p if p >' p.. Equation 

(106) is a legitimate assumption because this is not an equilibrium problem. 

The density having been specified, the magnetic field, which is assumed 

to be frozen in the matter during the spherical contraction, is uniquely 

determined. In spherical coordinates (r, 6, $), the field is given by 

B r = * B. cose[p(r)/p.] 2 / 3 , ( 1 0 7 a ) 

»[^f] ! Be * - \ s i n 9 PM i ^ } l 2 / 3 • ( 1 0 7 b ) 

where p(r) is the mean density within a sphere of radius r. Mestel shows 

that near the center of the cloud (r << r f l), one has that p ~ p, so that 

the field is nearly uniform and equal to B.(p/p.) . In the intermediate 

region 1 « r/rQ « (p /p.) , the field is almost radial (Bg « Bp 

except at 6 * ir/2. At larger radii, r/rQ » (pJP^) • P ~ P A and the 

field becomes uniform and equal to B.. 

The nearly radial field, which is solely the result of the imposed 

spherical contraction, causes large "pinching" forces at the equator — 

so much so that magnetic forces much exceed gravitational forces. Mestel 



-85- LBL-3602 

argues that, if this configuration is achieved through rapid, violent 
contraction of the cloud, flux dissipation, rcconnection and detachment 
of field lines will take place at the ec ator. He points out, however, 
that preferential flow of matter along field lines might prevent such 
configuration from being reached. 

Perhaps the most significant result of this study is the derived 
criterion for lateral collapse. If the initial density, radius, and 
magnetic field satisfy the inequality 

-|-9- > (0.013/G) 1 / 2 * 0 14 G" 1 / 2, (108a) 

the gravitational forces exceed the magnetic forces (at 0 = T/2) SO that 
further contraction will ensue. Equation (108a) may be written in the 
alternative form 

*B \ *B/:rit. \ B i r0/crit. 
Evidently, eq. (108b) does not specify a critical mass (unlike eq. [94]); 
it defines a critical ratio of the total mass and the total flux of the 
cloud. It may also be considered as defining a critical ("Mestel") 
surface density for a given background field, B., namely, 

•k, = / — r a ^ - 0.152 G " 1 / 2 B.. (108c) 
^* \ T r 0 / c r i t . * 

With B. measured in pgauss, this is 

« 1.75 x ^"'.(BjAS ligauss). 

If the background magnetic pressure is equal to the background gas pres­
sure (not an unreasonable assumption for the intercloud medium), that is, 

2 
i f a • B./8itP » 1, we may compare HL. with the Bonnor-Ebert cr i t ica l 

O X O N 
surface density (see eq. [113] below). Ne ind that 
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( V W = 0.48. (10i>) 
This cannot be the case. One expects the critical surface density to be 

larger in the presence of a magnetic field. The sources of error are: 

(i) the collapse of the Bonnor-Ebert cloud is partly due to the external 

pressure, which was neglected in the magnetic case; (ii) the internal pres­

sure of the magnetic cloud was also neglected. On the other hand, Mestel's 

non-equilibrium configuration actually antagonizes the collapse because of 

the greater distortion suffered by the field lines compared to the case 

in which preferential flow along the field takes place. 

We note that the collapse criterion (eq. [108b]), in addition to being 

independent of the cloud temperature (by assumption), is also incomplete 

in the sense that it is a condition on the ratio of the total mass to the 

total flux of the cloud. It is clear, however, that the manner in which 

matter is distributed among the various flux tubes is crucial. For instance, 

we consider anon-magnetic cloud on the verge of collapse according to the 

Bonnor-Ebert criterion. We introduce a magnetic field such that a flux *_ 
o 

threads the cloud. If all field lines are confined to a thin shell at the 

surface of the cloud (while the interior is field-free), the cloud can still 

collapse. If, however, the same flux is distributed over a thin cylinder 

through the center of the cloud, collapse will be impossible. A complete 

criterion for the collapse of a magnetic cloud should depend on the mass-

to-flux ratio in_ each of the flux tubes threading the cloud as well as on 
the cloud temperature and the external pressure. 

b. Strittmatter's Spheroidal Model 

Strittmatter (1966) studied the contraction of a magnetic cloud 

through the scalar and tensor virial theorems (Chandrasekhar and Fermi 1953). 

The tensor virial theorem shows that the magnetic field is somewhat more 

effective in preventing the collapse of a cloud than the scalar virial 



-87- LBL-3602 

theorem would indicate. In the case of a highly flattened cloud, how­
ever, the two theorems give identical results. The critical mass of such 

2 1/2 a spheroid is (8/3n ) (= 0.52} times that of a sphere of the same mass 
and flux. 

Strittmatter assumed that the shape of the cloud remains spheroidal 
during contraction (the cloud is oblate with its axis of symmetry parallel 
to the magnetic field) and that the density and the magnetic field remain 
uniform inside the cloud. The density outside the cloud is assumed 
negligible and the magnetic field uniform at infinity. He required the 
continuity of only the normal component of the field across the cloud 
surface. (In the case of a dipole field, he showed that requiring conti­
nuity of the tangential component of the field increases the effectiveness 
with which the field provides support against gravity; specifically, the 
magnetic energy increases by about a factor of 2.) With the internal 
and external pressures neglected, no "equilibrium" is possible for a 
highly flattened cloud if 

*B \ *B/crit. \27 it" G / 

or 
-^-y > a. * 0.123 G " 1 / 2 B. . (110b) 
it r* » * 0 

If we measure B. in ugauss, eq. (I10b) becoaes 

m s » 1.42 x 10" 3 

( — ) • 
\ 3 ugauss ' 

The critical surface density is soaewhat smaller than Mestel's (eq. [108c]). 
In view of the different methods employed to arrive at the two results, 
it is reassuring that they differ by only a factor of 1.26. Yet, it is 
disturbing that the non-magnetic Bonnor-Ebert calculation: give a more 
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stringent criterion for collapse (see eq. [109]). One suspects that 

exact equilibrium calculations will fair better in this respect. 

Strittmatter took great care in applying the virial theorem. How­

ever, because many misapplications are frequently made, a comment is in 

order (see also Mestel 196S, and Strittmatter 1966). 

c. A Comment on the Virial Theorem 

With the inertial term neglected, the virial theorem expresses 

a necessary (but not sufficient) integral condition which the various forms 

of energy present in the system must satisfy at equilibrium. By virtue 

of the fact that the details of the mechanical balance of forces are 

washed out, the virial theorem is particularly suited for the study of 

systems whose details are either not known or too complicated to study 

through the force equation. Almost by definition then, the time-inde­

pendent form of the virial theorem, which is strictly correct only for a 

system at equilibrium, is applied to simple non-equilibrium configurations 

thought to approximate the real system in an "average" sense. Quali­

tatively erroneous conclusions may be reached unless one proceeds witli 

care. The calculation of the critical mass for gravitational collapse 

of a cloud in the presence of a magnetic field is a classic example where 

the virial theorem is misapplied. 

Consider a massive, spherical, isothermal cloud of uniform density 

threaded by a magnetic field which i; uniform in all space. Let the 

cloud be embedded in a medium of uniform pressure and negligible density. 

If the mass of the cloud exceeds some critical value depending on the 

cloud temperature and the external pressure, the virial theorem will 

suggest that the cloud should collapse. This conclusion is independent 

of the magnitude of the magnetic field since the volume and surface 
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magnetic terms in the virial theorem cancel each other exactly -- this 
is as it should be because the magnetic force j x B/c vanishes everywhere 
for a uniform field. The field could very well have been of infinite 
strength! Clearly, a small contraction of the cloud nonnal to the field 
will bend the field lines and, for a strong field, will induce currents 
that will cease further lateral deformation -- contrary to the conclusion 
reached on the basis of the (misapplied) virial theorem. 

3. Equilibrium Calculations 
It is not an easy task to construct equilibrium configurations of 

magnetic clouds, Strittmatter (1966, p. 360) described the difficulties 
very eloquently: 

"...The absence of spherical symmetry renders the determination 
of the gravitational potential a matter of considerable complexity, 
unless the mass distribution is of a special form (e.g. a uniform 
spheroid or a set of spherical shells of constant density). A 
further complication is introduced by the requirement that the 
magnetic field link smoothly with an external force-free field. 
Equilibrium models are thus difficult to construct, homologously 
contracting models about equally so; nonhomologous contraction 
is almost impossible to study in detail except in special non­
magnetic cases..." 

These are the difficulties in solving the problem. In actuality, the 
greatest difficulty arises in formulating a well-posed, self-consistent 
problem including flux-freezing. Once a problem is posed, to obtain a 
solution by analytical, quasi-analytical, or numerical techniques (the 
search degenerating in that order) is usually only a matter of time. 

Before we pose and solve the complete problem, we summarize the few 
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existing equilibrium calculations. 

a. A Thin Disk with a Magnetic Field Parallel to its Axis 

The equilibrium in a direction parallel to the axis of symmetry 

of an isothermal, gaseous, self-gravitating disk having an infinite radius 

and a density independent of radial distance (Spitzcr 1942; Lcdoux 1951; 

Spitzer 1968a) remains unaffected by the introduction of a uniform magnetic 

field parallel to the syssnetry (z-) axis. Field (1969) considered the 

effect of a constant external pressure on the equilibrium in the z-

direction. He found that, as the surface density (m ) increases while 

the external pressure (P ) remains fixed, the thickness of the dis! (Az) 

first increases, reaches a maximum 

C 2 C 2 

Az m a i r - 1.32 *—T77 " °- 5 3 ^-fTT » ( H D 
B " ( 2 * G P o ) 1 / 2 (G P o ) 1 / 2 

and then decreases. The surface density at maximum thickness is 

1/2 

"••" \ 2*G/ \G / 
(112) 

This "maximum" surface density that can still be in equilibrium at an 

external pressure P is somewhat smaller than the corresponding Bonnor-

Ebert value, which is 

,1/2 ",. */P

n\V2 / P „ V 
•"•77- ;(f) • '-"(l) 

(113) 

- 1.92 « 10"-*/ 2__] gm/cm . 
\1800 k / 

The diameter, D , of a Bonnor-Ebert sphere at the verge of collapse is 

given by , 
D - 2R - 0.98 S-ryj . (114) 

file:///1800
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The fact that Az < i> and m. _,. < m_r reflects the effect of the 
max c. s.max ~ Be 

gravitational field due to the mass of the disk exterior to a radius 
"• Az 12. Although the "critical" surface densities m and m „ 

HMmA 9 j mwA DC 

are nearly equal, qualitatively different effects develop in each case 
if these values are exceeded. In the Bonnor-Ebert case, a sphere with 
surface density greater than »_ E collapses, whereas in the one-dimensional 
geometry the thickness of the disk should merely decrease. It is well 
known that one-dimensional collapse of an isothermal gas is impossible 
because the pressure force normal to a thin sheet increases as (Ai)~ , 
while the gravitational force is independent of &z. 

Strictly one-dimensional calculations parallel to the magnetic field 
cannot pos&ibiy provide any information on magnetic-phenomena. So, Field 
(1969) explored the assumption that a disk of finite radius R * oz will 
actually collapse if az • oz . This led to a critical mass smaller 
than the Bonnor-Ebert value, given by eq. (94). That being impossible, 
the need to account quantitatively for the role of the magnetic field 
in the equilibrium of interstellar clouds became imperative. 

b. An Infinite Cylinder Aligned with the Magnetic Field. 
A cold, gaseous, infinite cylinder with a frozen-in field 

parallel to its axis may exist in mechanical equilibrium, in which the 
magnetic pressure gradients balance the gravitational forces in the radial 
direction. We consider an initially uniform density, p., and a uniform 
field, B.. After gravitational forces are "switched on", the equilibrium 
density is given by (see Field 1973) 

p(r) - olO) J 0(kr). (IIS) 

4 w p i 1/2 k • -s-=- Gl/i . (116) 
Bi 
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Since the radius of the .cylinder is defined by J 0(kR) = 0, it follows 
that 

R « 2.4/k 
n 

- 2.4 — — C'1/2 . (117) 
4,p. 

- ,4 3 
If we take B. » 3 ugauss and p. = 2 * 10 * gm/cn (* the mean inter­
stellar density), we find that 

R «• 370 pc, (118) 

a va!'- too large to be of practical significance. Although larger values 
of p. will yield proportionally lower values of R, it is not legitimate 
to proceed in that Banner because the frozen-in field (B.) must increase 
by the same factor as the density in eq. (117). On the other hand, 
smaller radii cannot be achieved by considering a finite cylinder and 
allowing compression along its axis followed by lateral contraction due 
to the increased gravitational forces. Field pointed out that a cylinder 
of finite length will transform into a disk under the effect of self-
gravitation. What, then, accounts for the apparent elongation of dark 
clouds along the field (Shajn 195S)? 

Of 31 clouds studied, Verschuur (1970a) finds that the relative angle 
between the field and the largest dimension of a cloud is less than 10* 
in 16 cases, less than 40* in 21 cases, and larger than 40* only in 10 
cases. !t must be noted, however, that the field direction, with which 
the cloud elongation was compared, is that given by the theoretical model 
of Mathewson (1968) rfhich is in conflict with the recent Faraday rotation 
observations of Wright (1973) and Manchester (1974) -- see discussion in 
f IIIC. 

If a cloud is not self-gravitating, we can understand its possible 
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elongation along the field, especially if it is in a region in which 
the nagnetogravitational instability develops. Under the action of the 
galactic gravitational fielu the cloud will be stretched along the magnetic 
field lines. Also, if conducting matter is deposited in a particular flux 
tube at a pressure higher than that of the ambient medium, it can expand 
More easily along the field than across it. If, however, a cloud is known 
to be self-gravitating and to be aligned with the magnetic field, and if 
no rotation about an axis normal to the field and no internal source of 
energy (for example, H II regions) are observed, rather than abandoning 
our faith in Newton's second law, we nay have to re-evaluate our ideas 
and confidence in the Methods used for inferring the direction of the 
interstellar Magnetic field. 

c. An Axisymmetric Model without Flux-Freezing. 
0, A. Parker (1973) constructed equilibrium solutions for a 

self-gravitating, isothermal cloud (M • 10 M-, T « 75K) surrounded by 
a hot and tenuous H II region of pressure 2.37 » 1800 k. An axisymmctric 
Magnetic field permeates both sedia and is both force-free and curl-free 
in the H II region and uniform at infinity. Solutions with Bm = 0.25, 
1.0, and 2.0 ugauss are obtained. The normal and tangential components 
of the field axe continuous across the cloud boundary, but the field is 
not frozen in the Matter. Consequently, although a solution satisfies 
the MHS equations and the boundary conditions (and an a_i hoc assumption 
Made in order to close the MHS equations), neither the Magnetic flux 
threading the cloud nor the Manner in which it is distributed can be 

T. D. A. Parker's assuMption that A = f » const, in his eq. [13] can 
easily be shown to iMply the requirement that the current density at 
equilibrium be given by j./c»-\rp, where p is the gas density; we use 
cylindrical coordinates (*, •, i). This is too stringent a condition 
on the adaissible solutions. 
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known before a solution is actually at hand. Even then, knowledge of 

the magnetic flux provides little useful information because the field 

can slip through the cloud, or the field lines may reconnect just to 

allow force balance if the cloud is thrown out of equilibrium. In fact, 

in some of D. A. Parker's equilibrium configurations, field lines close 

to the equator form closed loops already. Thus, the effectiveness of the 

magnetic field in preventing gravitational collapse cannot be quantified 

from such equilibrium calculations. 

The problem was formulated in spherical coordinates (r, 8, •) in 

terns of the gravitational potential, *, and the magnetic stream-function, 

y. [The magnetic field is given by B = -(r sine) 3*/96, 

B g • (rsin6)~ 3*/3r.J The method of solution was a variation of the 

"self-consistent field" iterative method of Ostrii'.r and Mark (1968). A 

mathematical sphere is chosen so as to surround the cloud. The Poisson 

equation for i|< and the Poisson-like equation for V ace solved within the 

sphere once an initial guess of the density and the cloud boundary is 

made. The force equation (actually, the Bernoulli constant) is then used 

to obtain a new density, thus permitting continuation of the iteration 

process. Solutions of the homogeneous equations outside the sphere are 

matched to the interior solutions so that the magnetic fiold is continuous 

across the boundary. Since the potentials are valid only within the sphere 

circumscribing the original cloud configuration, significant errors are 

introduced if the cloud becomes very flattened. Another source of in­

accuracy is the choice of spherical coordinates, which are not particularly 

suited for flattened objects. Nevertheless, the results do exhibit some of 

the qualitative features which are expected of magnetic clouds. 

The cloud flattens along the magnetic field, the more so the stronger 
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the background field (B̂ .) is. The isodensity contours behave likewise. 

The choice of the initial parameters, however, is such that the magnetic 

pressure is negligible or small compared to the gas pressure in the sur­

rounding mediurc. (In our notation, a ? B^/SuP^ = 0.004, 0.064, 0.256 

in Parker's three cases.) Therefore, it is not surprising that in the 

computed equilibrium states the magnetic field at the center of the cloud 

is amplified by as much as a factor of 9.48 in one case without the 

magnetic forces becoming dominant. As it can be deduced from the maximum 

ratio of central to surface densities (= 4.34) achieved in any one of 

Parker's solutions, the external pressure is playing a significant (but 

not dominating) role compared to self-gravitation -- see discussion in 

S VII below. On the ether hand, the internal pressure forces arc comparable 

to gravitational forces but larger than the magnetic force, in the weak 

field (B • 0.2S ugauss) esse; pressure forces become more important in 

the case B « 2 ugauss because of flattening. 

Parker found it necessary to exclude solutions with positive values 

of th*. arbitrary parameter X (see his eq. [13]) because the central magnetic 

field pointed in an opposite direction from that of i m « (,B„. In view ot 

our remark above, that j /c » - Arp (see footnote 7), we can understand 

this phenomenon. It is clear that once im has been chosen to point along 

the +i-axis, j. must be positive (that is, ; must point in the ••-direction); 

if j. is negative. Ampere's law implies that the field must be in the -z-

direction at least on the axis of symmetry. Therefore, to preserve *he 

direction of 6, the parameter X must be negative. 

D. A. Parker also considered uniform rotation (with angular velocity 

0) of the cloud about its axis of symmetry, which is aligned with the 

•agnetic field. This is permissible because the density of the surrounding 
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H II region was assumed negligible. Although corotation of the field at 
infinity is not expected in practice, the results are instructive. As 
one could anticipate, rotation simply dilutes the gravitational potential 

2 2 only in the lateral direction by an amount r JJ /2, giving rise to flatter 
clouds and to field lines which are less distorted than in the case with­
out rotation. 

We do not think that Parker's results support his conclusion that 
"the magnetic field exerts strong pinching forces in a narrow equatorial 
region" (D. A. Parker 1973, p. 64). His Tables V, VI, and VIII show that, 
at the equator, the magnetic force is always smaller than the pressure 
force. The field lines formed neutral 0-rings at the equator in some 
cases merely because flux-freezing, which would imply that the stream-
function V(r, z) is a single-valued function of r at a fixed z, was not 
imposed. 
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VII. NONHOMOLOGOUS CONTRACTION AND EQUILIBRIA OF 
SELF-GRAVITATING INTERSTELLAR CLOUDS EMBEDDED IN 

AN INTERCLOUD MEDIUM: FLUX-FREEZING 

A. Formulation of the Problem 
1. The Equilibrium Equations 

The equilibrium of a self-gravitating, conducting, isothermal, 
gaseous cloud surrounded by an intercloud medium of qualitatively similar 
properties is described by the MHS equations: 

- $ P k - P k $ <- • \ * ff/c = 0, k = 1, 2; (119) 
2. 

?"S - (4 w/c) £ T t (120) 
k*l K 

P k ' p k C k ' k " *• 2 ; ( l 2 1 ) 

VT* - 4»G E P k • C122) 

All quantities have their usual meaning. The subscripts 1 and 2 refer 
to the cloud and intercloud media, respectively. Unlike we did in § V, 
in this section we cc.isider the gravitational forces due to the gas only 
(p„ * 0 in eq. [10]). Cloud and intercloud Matter does not coexist in the 
same region of space (formally, f. n f- - 0, where f is the magnitude of 
any one of the subscripted quantities in eqs. [119] - [122]). The two 
media interact through their gravitational and magnetic fields as shown 
in the above equations and, in general, through pressure forces on their 
common boundary (see below). We note that eqs. (119)-(122) constitute a 
system of six equations '.i:: eight unknowns. Flux-freezing and conservatior 
of mass that would close the system have not been imposed yet. We shall 
incorporate these conservation laws in our equations properly in 5 VIIA2. 

It is convenient to introduce the magnetic vector potential, defined 
by eq. f13), that is, 

$ - v" * t, (123) 
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because Maxwell's equation 

V • 5 = 0 (124) 

is then satisfied identically. 

We consider a three-dimensional geometry with axial symmetry about 

the :-axis. The z-axis may be thought of as running locally along a 

spiral arm and lying in the Galactic plane, although this is not essential. 

We use cylindrical coordinates (r, • , z) throughout this section. (To 

avoid confusion, we denote the position vector in spherical coordinates 

by x and its magnitude by |x|, which is distinguishable from the Cartesian 

coordinate x.) We choose the origin of coordinates at the center of the 

cloud so that there is reflection symmetry about the plane 2 = 0 . Then 

we may consider only the right-half plane z a 0. 

With B being a poloidal and A a toroidal vector, the scalar function 

•(r, z), defined by 

»(r, z) = r A.(r, z) s r A(r, z), (125) 

is both constant on a magnetic surface as well as a constant of the motion 

(see i IVB2, eqs. [29] and [30]). We nay, therefore, use * to label the 

magnetic surfaces once and for all. The intersection of a magnetic surface 

with the (r, z)-plane is referred to as a field line. Note that the 

magnetic field may be written in terms of # as 

t * - r"1 e. « $* , (126) 
f 

and that the magnetic flux (*_) through a contour of radius r is given 

by (see $ IVB2) 

• B » 2 IT •. (127) 

In each of the two media we define a scalar function of position, 

\(T, z), by 
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q fc •= P k exp(iP/C^), k = 1, 2; (128) 

and we write eq. (119) in terms of • and q. as 

j k ?«/cr = exp(-*/C k) Vqk, k = 1, 2. (129) 

By what is now a familiar procedure, we may show that 
P. exp(i|i/C?) = q. = constant on a field line = qk(*)» k = 1, 2; (130) 

and that 

£«P(*/Cj[> - — 3 5 — . k ' 1. 2; (131) 

where we have used the fact that j. is toroidal, and we have defined 
J k = (J.).. The meaning of eqs. (130) and (131) is analogous to that 
of equations (8) and (9) of Paper I (see discussion following eq. [9] 
therein). 

Using eqs. (123) and (131), eq. (120) becomes 

(132) if * f « it • e^ 4 . r £ exp^/C*) g^. . 

By expanding the left-hand side, we may write eq. (132) as 

3 1 1 3 1 a2A ^ 2 <*%W 

I F H H • #• -4*r£«p<-*/ck>-V-• f l 3 3 ) 

K*l 
This is to be solved simultaneously with eq. (122), which may be written 
in an expanded form as 

I £ ( * £ ) • & -4,G|;C- 2. V*)exp(-*/cJ) 
(134) 

= 4 w G p. 

Ne have made use of eqs. (121) and (130) in eliminating p. from the right-
hand side of eq. (122). Equations (133) and (134) are coupled, nonlinear 
differential equations for <|> and •; the quantity q. (k » 1, 2) has yet to 
be determined as a function of •. We shall retain A, instead of •, as 
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the dependent function in eq. (133) because it is convenient to work with 
a self-adjoint form of this equation -- transforming from A to • and 
vice versa through eq. (12S) is a trivial matter. To complete the 
description of the cloud and intcrcloud media, we must calculate the 
functions q k(*) in a manner consistent with conservation of mass and flux. 

2. Calculation of the Functions \W , k = 1. 2. 
The cloud boundary may be specified uniquely by the function Z (*), 

which represents the projections onto the z-axis of the intersections of 
field lines and the cloud boundary (see fig. 7). This amounts to 
choosing a coordinate system (z, • ) , whose advantage will become evident 
shortly. Then, half of the mass (6m.) of each medium in a flux tube 
between field lines characterized by * and • +S • is, by definition, 

\W r(z,#+<S#) 
6 " k { * ) * J d z f dr 2irr P ] {(r, z), k = 1, 2. (135) 

Lfct*) r(z,») 

Note that the integration over z is performed along the field line • , 
between the limits 

L. (•) - 0, if k = 1; 
K (136a) 

= Z ^ * ) , if k - 2 

and 

UL(») - *..(•). if k • 1; * c* (17,6b) 
« Z (•), if k - 2. max 1 •" 

If the system is ass'imed periodic in z with wavelength X , then 
Z » A /2. This would be the case if the contribution of the galactic 
gravitational potential were included in eq. (122). If the system extends 
to infinity, then Z • «. 
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Since the integration over r is performed keeping z fixed (sec fig. 7), 
we may write 

dr = d« (3r/3t) (137) 

and change variables from r to *. Using eqs. (121) and (130), we elimi­
nate p. in favor of * and we perform the trivial integration over * in 
eq. (135). We then solve for HyW to find that 

2 1 1 d* / L . ( » ) I ck J 
K (138) 

k = 1, 2. 

The quantity r(z,») refers to the r-coordinate of the field line • at z. 
If we ignore conversion of one phase of matter into the other, the 

functions q k(k = 1, 2) are always given by eq. (138) in any equilibrium 
state of the system, since the mass-to-flux ratio, dm. /d#, in each flux 
tube is a constant of the motion for each phase. If this quantity were 
known either through observations, or through a complete theoretical 
understanding of the mechanism which creates the interstellar flux, a 
unique equilibrium configuration for a dense cloud could be calculated 
by solving eqs. (133), (134), and (138) simultaneously, subject to ap­
propriate boundary conditions (see below). 

3. Approximate Description of the Intercloud Medium 
The preceding formali&a gives a general description of the inter­

cloud Medium. It takes account of the self-gravitation of the intercloud 
gas and it does not assuae that the Magnetic field is either force-free 
or curl-free. He shall not solve this general problem in this paper, al­
though its solution is straightforward. As we shall see in f VIIF, there 
•ay be a need for the solution of this probtest. Nevertheless, it seems 
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senseless to proceed in that direction without understanding first the 
effect of the following, somewhat simplified description of the intercloud 
medium on the equilibrium of a dense cloud. 

Observations indicate that the intercloud medium is rather hot and 
tenuous compared to interstellar clouds (see § IIA1 and footnote 5 in 
S VIA). We shall, therefore, assume that 

P 0 = P 2 + 0 (139a) 

and 
C 5 C, + •>. (139b) 

Consequently, the intercloud medium is unaffected by the graviational field 
of the cloud and the intercloud pressure is constant along field lines. 
If we assume uniformity at infinity, it follows that 

P = P, = constant (140) 
o z 

everywhere, and eq. (128) yields 

so that 
dq 
g^-0. (142) 

Thus, the contribution of the intercloud medium to the right-hand sides of 
eqs. (133) and (134) vanishes. The assumed poloidal field and uniformity 
at infinity render the rarefied (eq. [139a]) intercloud medium not only 
force-free, but current-free as well. In this approximation, the intercloud 
medium simply confines a dense cloud through pressure forces and exerts 
•agnatic stresses at the cloud surface. Care must now be taken so that no 
infinite forces appear across the cloud suvface. 

4. Continuity Conditions Across the Cloud Boundary 
a. Gravitational Field 

We write the Poisson equation in terms of g as (see eq. [12]) 
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v • g = - 4»G p. (143) 

To show continuity of the component of g normal to the cloud surface, we 
integrate over the volume of a "pill-box" of height h and surface AS, 
parallel to the cloud surface, and we use Gauss' thcoren to find 

[g ] AS = - 4«Gp AS h/2. 

We take the limit h •* 0 to obtain that 

[«„] • 0. (144) 

One proves the continuity of the component of g tangent to the cloud 
surface by first noticing that eq. (12) implies that 

? * g « 0. (145) 

An integration over an elemental surface having two sides parallel and 
two normal to the cloud surface and conversion into a line integral fol­
lowed by the usual limiting process yields 

[« t l n] " 0. (146) 

That the gravitational potential is also continuous across the cloud 
surface follows from 

d* • $f> • dx - - g > dx (147) 

and an integration over a path with one end-point just inside and the 
second end-point just outside the cloud surface. Use is then made of 
eqs. (144) and (146) to obtain 

[*] - 0. (148) 
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b. Gas Pressure 
The pressure of the intercloud medium is constant every­

where (see oq. [140]). If we let s denote distance along field lines, we 
•ay write the component of the force equation parallel to t as 

£ = • P * . C49) 

where g. « -&|i/3s. There exists a jump in the right-hand side of eq. (149) 
across the cloud boundary, but it is finite because g is continuous (see 
eqs. [144] and [146]) and [p] is bounded and equal to the cloud density 
at the surface, p.. Therefore, 

[P] - 0 (150) 

and we have as a consequence that 
P 

Note that in deriving the condition (ISO) we M d e no assumption whatsoever 
about tha angle at which field lines intersect the cloud boundary. 

c. Magnetic Field 
Our foaulation of the problea in tens of the Magnetic 

vector potential, rather than the Magnetic field itself, guarantees the 
continuity of the component (») of I nonaal to the cloud surface (sec 
eqs. (123) and (124)). 

To show that the tangential coaponent of S is also continuous, we 
first writ* the force equation as 

? (*•—) • ••• fel* • *>* " ° 

Ma M M take the dot product of the left-hand side with 4x, an infinitesiaal 
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displacement from one side of the boundary to the other. In the limit 
6x + 0, we find [recall that 6( ) = fix • $( )] 

K)- [••£ = 0, (152) 

where we have used the continuity of g across the boundary and the fact 
that the jump in the gas density is finite. Because of eq. (150), it 
follows that 

[B2] « 0. (153) 

2 2 2 Since B * B + B (where B is the component of the field tangent 
to the cloud surface) and [B ] - 0, eq. (153) implies that 

(B t a n] - 0. (1S4) 

d. The Function q(*). 
It follows fro* the definition of q. (eq. [128]) and 

eq. (141) that the discontinuity of q ( = q̂  within and q, outside the 
cloud) across the cloud surface is given by 

[q] - P o (exp(*s/cj) - 1) . (155) 

which is finite. 
An important point must be evident by now. The formulation of the 

problem in terms of potentials, rather than the fields themselves, led to 
differential equations which have built-in all the necessary continuity 
conditions across thi properly defined (by eq. [1S1]) cloud boundary. 
Hence, we do not need to solve the full equations within the cloud, the 
homogeneous equations outside, and then match the two solutions. It is 
now possible to solve the equations over a large region (which could be 



-106- LBL-3602 

infinite) surrounding the cloud and the relevant part of the intercloud 
medium. First we must specify the boundary conditions. 

5. Boundary Conditions 
Since A is a vector with only a ^-component and since we assumed 

axial synmeti/, we must have that 

A(r * 0, z) « 0; (156) 

otherwise its direction at r = 0 would not be uniquely defined. Reflection 
symmetry about the plane z » 0 implies that 

Mg,*? * 0. (157) 
i • 0 

We require that B be uniform at infinity and equal to e B^. (n practice, 
"infinity" can be the surface of a large cylinder of radius R and half-
height Z, such that R and Z are much larger than the size of the cloud. 
Then we any write 

A(R, z) • B^ R/2 (158) 

and 
A(r, Z) - B. r/2. (159) 

face we have a solution at hand, we nay easily investigate the effect of 
varying R and Z. (Instead of eq. [159] we could use periodic boundary 
conditions equally well, in which case JA/Szl _•(). This would be the 
case if we considered the effect of the galactic gravitational field.) 

Mithout the following being an independent boundary condition, we 
note that the total flux (divided by 2«) through the large cylinder of 
radius R is given by 

•total "•- *2'2-
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We also asfurae that on the surface of the large cylinder, centered 
about the cloud, the gravitational potential is that due to a point mass 
equal to the mass of the cloud (M) and located at the origin of coordinates, 
that is, 

*(R. z) = - 2
 G M

 2 1 / 2 (160) 

and 

«r, Z) « - °* , . (161) 
(r + zV 

Since the next term in a multipole expansion of the gravitational potential 
is the quadrupole one, the error due to this approximation is of order 

2 (R./R) in the case R » Z, where R. is a representative dimension of the 
cU-ud. We siaply have to choose a large enough R for sufficient accuracy. 

The as suited reflection symmetry about the plane z « 0 implies thzt 

^Sf'^l - 0 . (162) to i 
'z • 0 

Since the r-coaponent of the gravitational field Bust vanish on the z-
axis (this follows directly fro* eq. [143] by application of Gauss' theorem), 
we *ust also have that 

W y ) I - 0 . (163) 
* 'r - 0 

Having specified the boundary conditions, our problem is well-posed. We 
•ay solve it provided that we know the asss-to-flux ratio in each flux 
tube threading the cloud. To estiaate this quantity, we shall aake use 
of a reference state of the systea. 
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B. A Refe'rencc (Non-Equilibrium) State 

The mass-to-flux ratio (dm/d*) in a dense cloud may be obtained from 

high-resolution (albeit nonexistent) observations of the distribution of 

mass and flux within such a cloud. Wc hope that in the time elapsed since 

the publication of Paper I, where we pointed out how crucial the quantity 

dm/d* is in determining the accessible states (and, in part, the dynamics) 

of the interstellar gas, observers are putting some effort in this direction. 

In the meantime, we are forced to estimate dm/d* for a dense cloud relying 

mainly on a "principle of avoidance." Our estimate must be -such that it 

avoids contradicting either any physical law, or whatever meager observa­

tional evidence might exist. 

There is s'ich a state readily available and, in fact, overused. 

Virtually all estimates of clpud parameters have relied on the assumptions 

that a cloud is spherical, of uniform density and, wherever a magnetic 

field is involved, it is also taken as uniform throughout. Clearly, this 

is not an equilibrium state for a self-gravitating, magnetic cloud. We 

shall use this state to calculate the mass-to-flux ratio both because it 

is a simple one and also because we would like to illustrate how different 

from this an equilibrium state actually is, even though the two have the 

same mass and the same flux. We assume that the mass-to-flux ratio of 

our system is the same as that of a spherical cloud of mass M, radius R., 

uniform density p. and permeated by a uniform magnetic field B.. The 

quantities p. and B. are not fundamental and we shall assume no particular 

values for them. However, R. determines dm/d* in this geometry (see 

below). We easily obtain the various quantities in this state. 

Half the cloud mass = M/2 * (2 ir/3) p i R? (164) 

Total flux through the cloud = irRj B^ = 2 ir ̂  . (165) 
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.V(r) = B. r/2, (166) 

*(r) » B A r2/2 = tB(r)/2 IT. (167) 

The gravitational potential and field are continuous across the surface 

and are given by 

(168a) 

and 

R? 
- — G p -±- , |x| 2 R A; (168b) 

3 |x| 

g - - ** G p. |x| , |x| s R i ; (169a) 

R 3 

" " S G pi ||j-2 • ' * | i R i ' ( 1 6 9 b ) 

where |x| is the radial distance in spherical coordinates (|x|, d, $). 

The function q is 

q t - P A expOf^/C2), |x| < R i ; (170a) 

- P 0 . |x| > R.; (170b) 

where *. is given by eqs. (168a, 168b), C is the isothermal speed of 

sound in the cloud (we dropped the subscript since this is the only C 

present), and P is the inter 

isothermal equation of state 

present), and P is the intercloud pressure. As usually, we consider an 

PA - PA C2. (171) 

We note that q. cannot be expressed as a function of *. alone. This is 



-110- LBL-3602 

as expected because the reference s ta te i s not an equilibrium one. 

We now calcula te the mass-to-flux r a t i o in each flux tube. I t is 

zero outside the cloud by assumption (see eq. [139a]). We have that 

Z

? t r +

f

5 r 

4- mass in ( r , r+dr) = <Sm = 2tr p. I dz J dr r 
6 r 

(172) 

= 2» P i r 6r (R? - r 2 ) 1 / 2 , r <, R^ 

and that 

flux in (r, r + 4r) = «*„ * 2it r 5r B.. (173) 
B l 

So, we recall eq. (127) to find 

it > B. r 4r. (174) 

Neither 6n nor 5« bear the subscript "i" (standing for "initial" state) 
because both quantities are constants of the notion by mass and flux 
conservation. Since the field lines are straight and parallel to the z-
axis, • is a function of r alone and we may combine eqs. (172) and (174) 
to obtain the desired quantity dm/d$: 

\V2 ^•'•fK)' • s • . el 
(175) 

0, « a *,,; 

where * , is given by eq. (165). 
Before solving our equations, we write them in a dimensionless form. 

C. The Dimensionless Problem 
We measure the magnetic field in units of its value at infinity, B., 

and the gas density in units of its value in the spherical reference state, 
1/2 p.. The unit of length is chosen as C/(4irG p^) , which is related to 

the Jeans length in the reference state. The , the unit of time is fixed 
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by specifying the unit of speed as C, the isothermal speed of sound in the 
cloud. It follows that the units of various quantities of interest are: 

{P} = p. C 2 , {A} = CB./(4*G P ^ 1 - 2 . {*> = C V / ^ T T G p ^ 

3 3/2 1/2 C I 7 6 ) 

{M} = p. C 3/i4itG p.y", {dm/d*} = p. C/B. (4*G p.) • 

1. The Basic Equations 

In dimensionless form, our fundamental eqs. (133), (134), and (138) 

become 

JL [ l J±UX\ • 4 , . J L r Saitt .xp(-*), insi 
Jr Lr Jr \ /J 3z 20^ d» 

ide; 

(177) 

r 3r \ 3r/ 

« 0, outside; 

3 * + —f- x q(») exp(-«), inside; 
3z^ 

(178) 
« 0, outside; 

q ( 4 ) « JL drnflL/ /* d z r ( l f „ MLt*l exp[-*(z,«)]. inside; 
2» d* I J

a 3» 
(179) 

P , ou t s ide . 

where (see eq. [175]) 

Vl/2 dm(») 
d* — H) 

0, • 2 ^ , 

* £ »ct : 

(180) 

and o. is the (constant) ratio of the magnetic-to-gas pressures inside the 
cloud in the reference state, that is, 

*L 2 B?/8ir P.. (181) 
The terms "inside" and "outside" stand for "inside the cloud" and "out­
side the cloud", respectively. 
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2. Boundary Conditions 

It is straightforward to put the boundary conditions, expressed by 

eqs. (156)-(163), in dimensionless form. The result is 

A(r = 0, z) = 0 

A(R, z) = R/2 

A(r, Z) = r/2 

3A(r,z) 
3z 

(182a) 

(182b) 

(182c) 

(182d) 

»Kr,z) 
3r 

MIJII 
az 

r • 0 

I « 0 

#(R. z) - - K\ I 3(R2 + z 2 ) l / 2 

HT. Z) « - k\ I 3(r2 • Z 2 ) 1 / 2 

(182e) 

(182f) 

(182g) 

(182h) 

The dimensionless form of eq. (151), which specifies the location of the 

cloud boundary, is 

P„ • P . (183) 

3. The Reference State 

Ne write in dimensionless form some of the parameters calculated 

from the reference state for later convenience (see eqs. [164] - [170]): 

M/2 = 2* Rf/3, •at ' R l / 2 ' •total " R 2 / 2 

A t - r/2, * i - r2/2 

(184) 

(185) 
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i>± = - (3 R* - |x|2)/6, r s R.; 
(186) 

r*R. 

q4 = expC^), |x| s R^ 
*J/s|*l. 

P o , |x| > R.. 
(187) 

We express, for later reference, the initial gravitational energy 
(W ) of the cloud and the magnetic energy (K ) inside the cloud in units 
of the cloud thermal energy (U). In terms of our dimensionless parameters, 
we find the following ratios: 

|Wg| / U * (2/15) R* (187rA) 

and 
W B / U = (2/3) a i f (187-B) 

which provide a rough measure of the relative strength of gravitational, 
magnetic and pressure forces (cf. S VIC2c). 

4. Free Parameters 
It is clear that there are three free parameters in the equations, 

namely, a., P , and R.. We may understand this on physical grounds. The 
Bonnor-Ebert (non-magnetic) problem had only one free parameter related 
to the characteristic Jeans length. Such a dimensionless length is ex­
pected to appear in our case as well. A second free parameter expressing 
the relative strength of the magnetic and gas pressures in the intercloud 
medium at infinity must also exist. Let it be 

a 0 * B?/8ir P o. (188) 

If the distribution of mass in the flux tubes threading the cloud (that 
is, if the function dm/dt) were known through a detailed understanding 
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of the mechanism responsible for the generation of the interstellar field, 
the above two free parameters would be sufficient to categorize an 
equilibrium state of the system. Neither observations nor theoretical 
considerations can determine dm/d* at present. Ilencc, in reality, our 
problem contains two free parameters and a free function. It is only 
because of the simplifying assumption, that the system developed from an 
"initial" uniform state through continuous deformations of the field lines 
(under flux-freezing), that the free function may be specified by only one 
additional parameter. 

For completeness, we note that if wc had chosen as units of length 
and density the quantities C2/(4tCP ) 1 ' 2 and P 0/C 2, respectively, aQ 

would have replaced o, in eq. (177) and P would have been replaced by 
unity in *q. (179). However, R. would not have been sufficient by itself 
to specify dm/d*; specification of the density of the reference state, p., 
would have been necessary (see eq. [iVS]). Me choose to work with the set 
(«*• P«» *J) rather than (a , p., R,). The external pressure P is i o i o i l o 
directly related to forces at the cloud boundary; we may obtain equilibrium 
solutions in which the cloud has expanded or contracted relative to the 
reference, spherical state by simply choosing P < 1, or P > 1, re­
spectively, if gravity is weak. 

By definition, the parameters a , a., and P are related: 

«. - o„ P„ . (189) 
1 o o 

Altogether then, the free parameters are R^ and any two of the three 
quantities in eq. (189). 

D. Method of Solution 
There were no analytical or numerical methods available to solve the 

simpler problem of Paper I. We could not expect that there would be any 
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for the present problem., liquation! {177) 4-v) (178) are formally similar 
(but not identical) to cq. (CI) solved in Paper 1. A similar approach 
suggests itself. However, we now face the complication that cqs. (177) 
and (17t) must be solved simultaneously. To complicate matters further, 
the cloud boundary is not known in advance; it must, therefore, be treated 
»t a free boundary. Ke found that no amount of advanced knowledge of 
mathematical and numerical techniques could help us. A method based on 
simple physical thinking worked, its underlying idras are as follows --
for further details, see Appendix A. 

Guess a gravitational and a magnetic potential • and A, respectively, 
(and, therefore, a gravitational and a magnetic field). Distribute the 
matter in the various flus tubes within a (guessed) cloud boundary in such 
a manner (consistent with the conservation of the mass-to-flux ratio) that 
gravitational and pressure forces are in exact balance along field lines. 
In general, this distribution of matter will not be consistent with the 
guessed • or with the guessed cloud boundary. Calculate, therefore, the 
new * and the new cloud boundary implied by the new distribution of matter. 
Use the latest « and the latest distribution of matter to calculate the 
currant density necessary to balance all forces in a direction perpendicular 
to field lines. This currant density will not, in general, be consistent 
with the guessed set of field lines [t(r„ t) • rA(r, z)J. It (and the 
latest *) must, therefore, be used to determine a new set of field lines. 
The entire process is repeated until the distribution of matter, the 
gravitational field, the current density, and the magnetic field are all 
mutually consistent «nd pressure equilibrium across the cloud boundary 
is satisfied. 

In practice, the above iterative method of solution is unlikely to 
converge. It is necessary to introduce two independent relaxation para-
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Meters (sec Appendix A), which provide a quantitative measure of how 
Much better or worse the potentials of one iteration are compared with 
those of the previous iteration. In addition, to avoid violent oscillations 
of the cloud boundary, we introduced a third relaxation parameter. We 
shall refer to our acthod of solution as a "relaxation iterative pro­
cedure" (RIP) or, More specifically, as a "triple-relaxation iterative 
procedure" (TRIP) -- indicating the nunber of relaxation parameters involved. 

E. Equilibrium States 
1. A Preview of the Results 

To span the entire three-parameter space of solutions is not only 
impossible, but also senseless. Physical considerations can limit the 
parameter space fro* the outset. Moreover, the behavior of solutions be­
yond a certain range of values of each of the three free parameters seems 
to Introduce no new features. 

The first physical consideration stems from our stated interest in 
star formation. Irrespective of the Mechanism that may bring a cloud to 
a critical state, self-gravitation Must become important if a cloud is to 
collapse. Me, therefore, exclude fro*our present study the cases in which 
the Mass-to-flux ratio is so small that gravitational forces play only a 
Minor role in the equilibrium of a cloud. Nevertheless, we used these 
cases to test the accuracy of TRIP. A small enough R. represents this 
class of cases. (Recall that the Mass of the cloud is proportional to 
R? while its flux varies as R ^ so, U/*al " Rj)- Given an ĉ  and a PQ 

(see eqs. [181], [171] and the unit of pressure in eq. [176]), we choose 
R. S M S U enough so that the equilibrium state is one of pure pressure 
balance between the cloud and the intercloud medium. The initial cloud 
boundary expands or contracts along field lines according to whether 
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P < 1 or P ••» 1, respectively; the Magnetic field remains uniform every­
where. The location of the boundary may easily be calculated analytically. 
We found that the computed and calculated states differed by at most 1%. 
(For a more detailed discussion of numerical matters, see Appendix A.) 
Although sone of these states represent a prolate (or, filamentary) dis­
tribution of matter about the magnetic field (which simply provides a 
rigidity to a filament with respect to changes in its shape) and may have 
some relevance to the interstellar medium (see discussion in S VIC3b), we 
shall discuss them no further in this work. 

To study the effect of gravitational forces on the equilibrium states, 
we fixed a. and we chose P s 1. Thus, with the intercloud pressure 
initially smaller than the cloud pressure, a cloud may contract with re­
spect to the spherical reference state only as a result of self-gravitation. 
The larger R. is, the more the cloud contracts, until an increase of R, 
by as little as * 1% yields no more solutions. For a given a. and P , 
we shall refer to such a state as a "critical" state for gravitational 
collapse, realizing that the true critical mass for the given flux and 
the given external pressure may actually be a few percent larger than 
the values determined in this manner -- if an equilibrium state is too 
close to the critical one, numerical noise may set it into collapse. 

We studied the effect of the external pressure by fixing a. and R. 
to such values that the cloud was hardly self-gravitating, and then we 
kept increasing P above unity. Gravitational forces came into play 
before long. There is, however, an important difference between equilibrium 
states with small and those with large external pressure that allows us 
to determine whether a dense cloud formed by slow accretion of matter or 
by an increase in the intercloud pressure (see f VIIF). If high resolution 
observations determine the detailed distribution of matter within a dense 
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cloud, our solutions suggest that wc may discriminate between these two 
mechanisms of dense cloud formation on the basis, of that observational 
evidence alone. 

The useful range of free parameters with which Me shall concern our­
selves here is 

0.2 s o. S 1.0, 0.5 S P 0 s 4.9. (190) 

For aost pairs of paraaeters (a., P ) studied, wc kept increasing K until 
a critical state was determined. The value a. « 1.0 is already large enough 
to reveal the behavior of solutions with a. » 1. Although cq. (189) and 
the range of values shown in eq. (190) imply that 0.04 s a s 2.0, we only 
studled in detail those cases for which 0.1 S a. s 2.0. These values of 

o 
a are certainly representative of conditions in the interclouJ medium us 
observations and theoretical considerations indicate at present. 

The following are a few of our general conclusions to be discussed 
below. In all critical states determined, the cloud mass exceeds the 
Bonnor-Ebert value for a cloud of identical temperature and external pressure. 
A cloud flattens along the field before reaching a critical state; it is 
flatter the stronger the field. It is also flatter the larger the inter-
cloud pressure. Compared to its value in the reference state, a often 
decreases in the equatorial plane because of flattening. This suggests 
that the effect of the cloud pressure on the nonhomologous contraction and 
collapse of a cloud cannot be neglected, unlike the case of homologous 
contraction. Spherical contraction of a cloud as a whole in the presence 
of an interstellar field of reasonable magnitude has but an academic 
significance. So does homologous contraction. 

The Bonnor-Ebert calculations have shown that a critical state is 
characterized by a ratio of the central-to-surface density always equal 
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Jo l*.3 regardless of the cloud temperature and the intcrcloud pressure. 

Our solutions show that the critical ratio P , / P - increases as P decreases; 
C- d O ™—-

it also increases as o. increases. There are good physical reasons for 
this behavior and we shall discuss the* below. 

We now examine soae of the equilibrium states in more detail. We 
use the dimansionless variables of I VIIC throughout, unless we note other­
wise. He shall give a few examples in dimensional form at the end, where 
we shall also provide general conversion formulae and scaling laws. 
2. Dependence on h. 

For a fixed pair of parameters (o^, P 0 ) , we determined equilibrium 
states for different values of R.. This situation corresponds to a study 
of a collection of sphericil clouds of constant (but unspecified) temper­
ature, of uniform (but unspecified) density embedded in an intercloud 
medium, whose pressure is some fixed multiple (* 1) of the initial cloud 
pressure, and threaded by a uniform (but unspecified) magnetic field. 
Each cloud has a different radius. Ne then release the clouds to reach 
mechanical equilibrium. We discard the ones with small enough radii for 
self-gravitation to be unimportant and we discuss representative ones 
among those which did not collapse. 

We take the magnetic pressure to be initially half of the cloud 
pressure (a. • 0.5) and the intercloud pressure to be somewhat smaller 
than the cloud pressure (P * 0.9). If it were not for self-gravity, a 
cloud with these parameters would expand along field lines. Figures 8a, 
8b, and 8c exhibit three equilibrium states characterized by three dif­
ferent values of R., namely, 2.5, 2.7, and 2.8, respectively. Increasing 
R. further by 2\ gave no solution; the cloud collapsed for a large number 
of choices of relaxation parameters. The state R. = 2.8 will be referred 



-120- I.BL-3MI.: 

to as a critical state. Each ordinate represents radial distaruv from 
the axis of symmetry (z-axis), while each .iliscissa represents distance 
fro* the center of the cloud along the axis of syimctry. For case in 
comparing an equilibriun state with the unifont reference state, we 
labeled both axes in units of R., the initial radius of the cloud in each 
of the three cases. The curves bearing arrows represent field lines; each 
is labeled by its r-coordinatc in the corresponding reference state, in 
which field liner were straight and equidistant. The solid, oMute curves 
are isodensity contours and arc labeled by the value of the density at 
equilibrium (in units of the uniform density, p., of the spherical refer­
ence state). The spacing (Ap) between successive isodensity contours is 
fixed so that the distance between the* is inversely-proportional to the 
mean pressure gradient in the interval. The outermost curve represents 
the cloud boundary (p • P there). The dashed curves represent contour? 
of equal Magnetic-field strength. To avoid repeating the awkward term 
"equal-magnetic-field-strength contours", we shall refer to these curves 

s as "isopedion" contours. Figures 8a, 8b, and 8c (and all similar figures 
below) show only the immediate neighborhood of the cloud in each case be­
cause at distances larger than about 2R. fron the cloud center the field 
is virtually uniform and within a few percent of its value at infinity. 

One aay take as a measure of the degree of flattening of a cloud the 
quantity 

f s WW < 1 9 1 > 
where z is the maximum extent of the cloud alor.4 the z-axis and r 
is the equatorial radius of the cloud at; equilibrium. The flatter the 

The term "isopedion" (pronounced Isap'edeon) derives from the Greek 
isos • pedion and translates literally into "of equal field [strength]." 
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cloud, the saallcr f is.. Several qualitative features of the solutions 
becoae evident by examination of figures 8a, 8b, and 8c. 

As R. increases, the cloud contracts further and further (compared 
with its corresponding spherical initial state). The magnetic field im­
pedes contraction in the lateral direction. The flattening increases with 
increasing R. and so does the central density and the central magnetic 
field. The isodensity contours are oblate, indicating the relative ease 
with which Mass can slide along field lines than across them under flux-
freeiing. In fact, the isodensity contours are move obia near the cloud 
center than they are at the boundary -- the more so the larger Ft. is. The 
Magnetic field strength has a Maximum at the cloud center and a minimum at 
exactly the position of the equator (B . = 0.912, 0.793, and 0.753, 
respectively, for each of the states of fig. 8). This is a general property 
of the solutions. 

FroM the isodensity and the isopedion contours of each equilibrium 
state, one may estimate the ratio of the magnetic and gas pressures by 
using the expression 

o f(r, z) = B i B^(r, z)/pf(r, z). (192) 
In the equatorial plane (z - 0), af has a maximum at r = 0. On the contrary, 
Of increases as z increases while r is kept fixed. The former behavior 
of a. reflects the relative ease with which natter slides along field 
lines, the most deformed of which occur at (very roughly) r * 0.6 R.. 
The increase of a. with z is mainly due to the "unloading" of matter from 
the outlying portions of field lines under the action of the gravitational 
field of the cloud. 

As R. increases (and the gravitational forces become stronger), a f 

at the cloud center increases. In all cases, the general behavior of a f 
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within the cloud is as described in the preceding paragraph. Wc note 

that a. at the cloud center has decreased below a. in each of the three 

states of fig. 8 (by 20.93, 13.4%, and 0.1%, respectively). However, this 

is by no means a general phenomenon. If a. is chosen small enough, af(0,0) 

is expected to increase because t .en B,(0,0) = p frO,0) K, where < * 2/3, 

so that o-(0,0) « p . (We shall discuss the exponent * below. We have 

verified that tx-(0,0) increases somewhat above a. in the case a. = 0.2.) 

In figures 9a, 9b, and 9c, we plotted the dimensionlcss column (or 

surface) density of each of the above three states as a function of position. 

Column densities for two orientations of the line of sight arc shown in 

each figure, (i) With a line of sight parallel to the axis of symmetry, 

an observer would see the column density aJr) as he moves a telescope 

beam away from the cloud center, (ii) If the line of sight, lies in the 

equatorial plane, one would observe the column density of(z) for a similar 

motion of the beam. [The subscript f signifies a "final" (that is, equi­

librium) state.] The column density a. of the corresponding spherical 

reference state is show-.i in each figure for comparison. [The subscript i 

signifies the reference ("initial") state.] We now compare figs. 9a, 9b, 

and 9c. 

As R. increases, the peak column density o,(r = 0) increases, reflect­

ing the larger lateral compression of the field by the stronger gr vitational 

forces. Yet, the maxima of the curves o-(r) are relatively flat because 

the magnetic field resists compression in a direction normal to the field 

lines. At equilibrium, the fraction of the cloud mass found at large 

radii is relatively small; in particular, it is smaller than that predicted 

by the uniform initial state. The departure of the column density of(r) 

of an equilibrium state from that of the corresponding uniform state is 
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solely due to compression normal to the field lines; onc-dimcnsional 
contraction parallel to the field does not increase o(r). 

The surface density as a function of 7, o,(z), shows a higher as 
well as sharper maximum than o f(r), indicating a larger compression 
parallel to field lines, The maximum value a,(z = 0) increases as R. does; 
so does the ratio o-(z = 0)/o-(r = 0), which provides another measure of 
the flattening of the cloud. At equilibrium, a considerably smaller 
fraction of the cloud mass exists away from the cloud center along the 
axis of symmetry than it did in the corresponding uniform state. 

Figure 10 exhibits the functions q(.») in each of the three states 
under consideration; they are plotted against the normalized flux */* , 
Since all three states have the same a. and P , each curve is labeled only 

i o 

by the value of R. of the corresponding initial state. Note that * . 
is different in each state because it depends on R. (see eq. [184]). As 
R. increases, the curve q(#) suffers a downward shift. This is so because 
q depends exponentially on the gravitational potential (which becomes 
more negative as R. increases) and only linearly on the pressure (see 
eq. [128]). 

3ef- •:« discussing the dependence of solutions on the external pressure, 
we ptint out that the critical state of fig. 8c has P_/Pc = 15.9, a value 
larger than the Bonnor-Ebert critical ratio. We shall return to this 
point in discussing some general conclusions. 
3. Dependence on P 

pe: 
while keeping a. and R. fixed? A series of solutions which differ only 
in P corresponds to equilibrium states of an initially spherical cloud 
of uniform (but unspecified) density, of constant (but unspecified) 

How do the properties of equilibrium states vary as we increase P 
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temperature and of a fixed initial radius, threaded by a uniform (but 

unspecified) magnetic field which differ only by the value of the external 

pressure. We shall not discuss the case in which the intorclouj pressure 

is smaller than the internal (cloud) pressure so that the cloud acquires 

a prolate shape by expanding along field lines. We choose R. small enough 

(= 2.4) so that gravitational forces arc initially weaker than (internal) 

pressure forces (see eq. [187-A]), and we take as before a. = 0.5. 

Figures 11a, lib, and lie represent equilibrium states with P = 1.9, 

2.9, and 3.9, respectively. We could not obtain a solution with P = 4.9. 

The isodensity and isopedion contours and the field lines arc labeled as in 

figs. 8a, 8b, and 8c. Figures 11a, lib, and lie reveal the following vari­

ation of physical parameters as P increases, (i) The cloud contracts in 

such a Manner that its oblateness increases. The degree of flattening (sec 

eq. (191]) is f « 0.47, 0.40, and 0.34, respectively, (ii) The central 

density as well as the ratio of central density and surface density also 

increase (p„ * 7.32, 13.2, 31.1, and p /p c = 3.8S, 4.55, 7.97). (iii) The 
C C o 

central Magnetic field is enhanced further, while, on the contrary, the 

minimum value of the field at the cloud equator decreases (B_. = 0.791, 
m m 

0.SS7, 0.370). (iv) The ratio of the magnetic and gas pressures at the 

center increases [a-(0, 0) * 0.39, 0.45, 0.53], whereas at the equator it 

decreases [a.(r , 0) • 0.165, 0.053, 0.017]. It is still the case that 

at a distance of about 2R. from the cloud center the magnetic field is 

nearly uniform and within a few percent of its value at infinity. The 

above dependence of the physical parameters of the cloud on P can be 

understood on physical grounds. 

That the cloud should become flatter as the external pressure in­

creases follows from the fact that along field lines the only opposing 

force is due to (internal) pressure gradients, while in the lateral direction 
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magnetic forces come into play. The increase in the central magnetic 
field and gas density with increasing P has as a primary cause the 
inevitable compression associated with the larger external pressure c.nd 
as a secondary cause the stronger gravitational field, which the primary 
compression gives rise to. However, the increase in the ratio of the 
central-to-surface gas densities is a secondary effect entirely due to 
the presence of gravitational forces; such an increase in P /p_ does not 
appear if self-gravity is unimportant, in which case the (dimensioalcs>) 
density is uniform inside the cloud and equal to P . Finally, the increase 
of a, with P at the cloud center is partly due to gravity. 
If R, is very small (50 that gravitational forces are negligible), an in­
crease in P results in a compression of the cloud along field lines. As 
a consequence, o f decreases everywhere inside the cloud (unless a. << 1). 

It is also reasonable that a, at the equator should decrease as the 
external pressure increases. This is a consequence of (i) the equality 

of (the dimension less) p c and P at equilibrium, and (ii) the decrease 
& o 

in B ._ (at the equator) which accompanies the larger distance between the 
field line just attached to the cloud equator and those outside the cloud 
(which have no mass loaded on them, so that they cannot but be "left behind" 
as the cloud contracts). 

Figures 12a, 12b, and 12c exhibit the surface densities corresponding 
to the states of figs. 11a, lib, and lie, respectively. The curves are 
labeled as in figs. 9a, 9b, and 9c. It will suffice to remark that the 
variation of the surface densities o-(r) and o-(z) with P is qualitatively 
similar to their variation with R. (discussed in 5 VIIE2 above), except 
that the maxima are now higher and sharper — a consequence of the larger 
compression caused by a larger P . 
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The var ia t ion of q with • for each s t a t e of f ig . 11 is of in teres t 

and i s shown in f ig . 13. Since a. and R. arc the same for a l l three s t a t e s , 

each curve i s labeled with the value of P in that s t a t e . Nole that 4 is 
o et 

the same for all three states now (contrast fig. 10). As P increases, 

a downward shift takes place as discussed in connection with fig. 10. The 

shift is larger at the center of the cloud than at the equator. This is 

so because of the exponential dependence of q on the gravitational potential, 

which, upon compression, becomes considerably altered (more negative) at 

the cloud center but not so much at the equator. The increase of the 

slope of q(*), as P increases, implies larger current densities and 

stronger magnetic forces (see eq. [131]) and is a result of the relatively 

large deformation suffered by field lines. 

4. Dependence on a. 

With P = 0.9 and R. = 2.5, we obtain equilibrium states for a. = 0.2, 

0.5, and 1.0. This situation corresponds to a study of the equilibrium 

states of an initially spherical cloud of uniform (but unspecified) density, 

of constant (but unspecified) temperature, threaded by a uniform (but 

unspecified) magnetic field and of a fixed initial radius as the ratio 

of the aagnetic-to-gas pressure at infinity increases (see eq. [189]) from 

0.222 to 0.556 to 1.111. We chose R. such that the initial gravitational 

energy of the cloud was smaller than the thermal energy but not negligible; 

specifically, |W |/U * 0.83 (see eq. [187-A]). The value of P was taken 

somewhat smaller than unity to eliminate compression due to the external 

pressure. 

We have already discussed the state with a. = 0.5 (see figs. 8a and 

9a). Figures 14a and 14b exhibit the isodensity and isopedion contours 

and the field lines of the equilibrium states characterized, respectively, 
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by a. = 0.2 and 1.0. By comparing figs. 14a, 8a, and 14b, wc conclude 

the following as a. increases, (i) The cloud becomes flatter -- especially 

the interior isodensity contours, (ii) The central density decreases 

(p„/p- = 6.31, 3.82, 3.14). (iii) The central magnetic field also de-c & 
creases, while its minimum value at the equator increases (B . * 0.834, 

0.912, 0.943). (iv) Compared to its value in the initial state, the 

ratio of the magnetic-to-gas pressure decreases as a. increases 

[a,(0,0)/a. = 1.20, 0.79, 0.64], whereas its minimum value at the equator 

increases [°f( r
m a x> 0)/ oi " 0.77, 0.92, 0.99]. (v) The larger o., the 

closer the distance from the cloud center at which the magnetic field 

reaches its value at infinity within a few percent. 

We note that the cloud boundary changed by somewhat less than 10* as 

a. increased by a factor of 5, and that readjustment took place mainly in 

the lateral direction. This is so because we had chosen R. such that 

gravitational forces did not dominate the pressure forces. Thus, the 

field lines of the equilibrium state with a. • 0.2 were not very deformed 

in the first place. By increasing a. (and, therefore, the relative strength 

of the Magnetic field), the field lines straightened out. But the re­

sulting redistribution of matter was not large enough to alter significantly 

the gravitational field at the boundary which is (almost) determined by 

the total mass only. Yet, the redistribution of matter that accompanies 

the straightening of field lines affects significantly the gravitational 

forces near the center (recall eq. [143] and Gauss' law). This is evidenced 

by the decrease of p (and B ) by a factor of two as we go from the state 

of fig. 14a to that of fig. 14b. 

It is significant that the ratio a»(0,0)/a. was larger than unity 

in the case ct. * 0.2 and smaller than unity in the other two cases. This 
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implies that in the proportionality B « p the exponent is greater than 

1/2 if a. is small and smaller than 1/2 otherwise. We are beginning to 

get a handle on the exponent K, which other workers have routinely been 

taking as 2/3. 

The changes in the surface densities o..(r) and o-(z) as a- increases 

are obtained by comparing figs. ISa, 9a, and 15b (correspondins, respectively, 

to the equilibrium states of figs. 14a, 8a, and 14b). It is clear that, 

as a. increases, the surface density through the cloud center decreases 

due to the smaller compression. Further comments on these figures would 

be redundant in view of our detailed discussion above. 

In fig. 16, we plotted q(#) for the three states of figs. 14a, 8a, 

and 14b. The curves are labeled with the values of a.. As a. increases, 

the curve q(*) shifts upward and becomes steeper. The shift is larger at 

the equator (*/•, • 1.0) because P is fixed and 4>, which is negative 

everywhere, increases (see eq. [128]); at the center, the increase in ty 

is partly compensated by the reduced gas pressure. 

F. Discussion of Results and Comparison with Observations 

Under the assumption that the magnetic field is frozen in the matter, 

we have determined equilibrium states which can be reached by isothermal, 

self-gravitating, magnetic interstellar clouds contracting nonhomologously 

from an initially uniform, spherical state and surrounded by a hot and 

tenuous intercloud medium. Even though we solved a time independent problem, 

we were able to make a connection between an initial and a final state by 

conserving the mass-to-flux ratio (dm/d4) in each flux tube of the system. 

We emphasized, however, that, if the function dm/d* were known either from 

theoretical considerations or from observations, our method would determine 

a unique equilibrium state for each cloud if the pressure and the magnetic 
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field af the intcrcloud medium arc known. 

1. Some General Conclusions 
The physical parameters of an e"iilibrium state show larse departures 

from those of a corresponding uniform, spherical slate. Equilibrium states 
•re characterized by oblate isodensity contours, the more so the stronger 
the initial magnetic pressure relative to the gas pressure and the larger 
the thermal pressure of the external medium. It is not difficult to obtain an 
enhancement of the column density through the center of a cloud by an 
order of magnitude even for the moderate range of parameters for which 
we presented solutions (sec, for example, fig. 12c). The mass density, 
p, may easily vary by more than an order of magnitude between the center 
and the surface of a cloud (for example, see fig. 8c and, even better, 
fig. 19a below). The ratio P./Pc i n * critical state is larger, the larger 
a. and the smaller P are -- in fig. 19a, this ratio is equal to 23. Since 
cloud masses are usually estimated by assuming a spherical shape and a 
uniform density, they may be overestimates. If a cloud is observed to 
have a more or less circular cross section, it does not follow that its 
dimension parallel to the line of sight is nearly equal to the observed one. 

a. The Slope of logB versus logp 
An invaluable contribution to our understanding of the formation 

of interstellar clouds by contraction from a more diffuse state of matter 
with a frozen-in field may soon be made by more accurate observations of 
the Zeeman effect in colecular clouds. We mentioned in S H I D that the 
somewhat uncertain data for H I clouds shows a correlation between logB 
and logn„. We also pointed out that, although Verschuur (1970a) drew a 
straight line of slope 2/3 through the data points, a line with a slope 
of 1/3 would fit the uncertain data at least as well. We used our 
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equilibrium solutions to predict what such a slope should be. 

Figure 17 is a Raster plot on a log-log scale of the ratio, B /B., 

of the central magnetic field and its initial (uniform) value against the 

ratio, p /p., of the corresponding values of the gas density. Each value 

of a. gives rise to a different curve. Three curves are shown (for a. = 

0.2, 0.S, and 1.0). To obtain the curve labeled (a. =) 0.2 we useJ 

thirteen (13) equilibrium states. The curve o. = 0.5 represents thirty 

(30) equilibrium states, and that with o. = 1.0 fourteen (14) states. The 

scatter of points about each curve was scarcely larger than its thickness. 

For each value of o., two states differing only in R. are located in 

such a Manner that the state with the larger R. is higher up along the 

curve (representing a larger central field and a larger density). Simi­

larly, two states differing only in P fall on a curve of constant a. 

in a way that the state with the larger P is located higher up along the 

curve. States which have the same R. and P but different a. fall on a 
1 0 1 

nearly straight line with slope roughly equal to 1 -- one may check this 

for the three states of figs. 14a, 8a, and 14b. The dashed curve is a 

line with slope 2/3, representing isotropic contraction. 

It is clear that, as a. increases, to produce a particular enhance­

ment of the magnetic field a considerably larger central density is re­

quired. It is important to note that the slope of each curve varies along 

its length; it is smaller the smaller the density enhancement. As we have 

seen in subsection E above, smaller density contrasts result from small R. -

corresponding to weak gravitational forces. Therefore, the above variation 

of the slope of each curve conforms with the reasonable expectation that, 

until gravitational forces become strong enough, contraction due to an 

increase in the external pressure proceeds mainly along field lines. Since 
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most II I interstellar clouds arc not self-gravitating, as evidenced 

by their low densities, whatever their formation mechanism, it must be 

effective over very large distances along field lines. [For a cylinder 

of intercloud matter (n. * 0.2 cm" ) of radius 5 pc to contain a mass 

of 300 Mg, it must have a length of about 710 p c ] 

Beichman and Chaisson (1974) measured an apparent Zeeman splitting 

2 

in the 1665-MHz line of the n 3 / 2 , J = 3/2 ground state of Oil, which pro­

duces a splitting of 3.27 Hz per milligauss (Radford 1961). They reported 

a field of about 3 mgauss. The authors themselves caution, however, that 

the interpretation of their observation is inconclusive because the observed 

circular polarization may originate in two different regions of maser 

action moving with different radial velocities within their beam width. 

[As it was earlier pointed out by Heer (1966), circular polarization may 

result from saturation effects in a maser amplifier with energy levels 

similar to those of OH.] Clearly, further observations are necessary to 

settle this issue. Whatever the observations may show, the theoretical 
justification provided by Beichman and Chaisson for their result is in 

4 5 -3 error. They took 10 ' c m as a known density of the Orion molecular 

cloud and argued that, since the interstellar magnetic field is 3 ugauss 
-3 4 5 - 3 

at a density of about 1 cm , a density of 10 ' cm implies a field 
2/T of about 1 mgauss according to the "law" B « p . As we have just seen, 

the exponent (<) is more likely to be less (perhaps even much less) than 

1/2. Even a magnetic field weaker by one or two orders of magnitude than 

the one which these authors claimed to have measured would certainly have 

been able to make further contraction proceed nonhomologously and non-

isotropically — thus decreasing K from their assumed value of 2/3. We are 

not suggesting that large magnetic fields are impossible to achieve. We 
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are proposiiif;, however, that such fields will be found in highly flattened 

clouds9 of very high density (106 - 10 cm"3 for 1/3 s K * 1/2). 

Unless the Magnetic field is initially very weak (a. < < 1), the 

formation of a cloud will enhance the field according to a relation 

B • p , where K is a positive function less than 2/3 that varies slowly 

as the contraction proceeds. Since fig. 17 shows that K is likely to he 

1/2 or less, it follows that u at the cloud center may rcnuin constant 

or even decrease upon contraction. We have also seen that, in the equa­

torial plane, a decreases with distance from the cloud center. This 

likely constancy or decrease of a upon contraction would have profound 

effects on the further evolution of a cloud as it relates to star formation. 

In particular, it follows from the work of Chandrasekhar and Fermi (.19To) 

on the Jeans instability in a uniform medium that the minimum scale L. 

that can collapse in a direction normal to the field is 

2 fl93) 
« — {1 * 2a). 

4Gp 

With a decreasing upon contraction and flattening, the possibility of frag­

mentation, which cannot occur during spherical isotropic contraction, 

arises (see also subsection F4 below). The effect will be more pronounced 

the larger a is initially. Since stars form predominantly in groups, 

fragmentation must be predicted by any theory of star formation. Fig. 17 

reveals only the rudiments of such a process; it would be very useful to 

extend it to include larger enhancements of the central field and gas 

9. Recall that, in all cases which we studied, the stronger gravity was, 
the flatter the isodensity contours became -- especially near the 
cloud center. 
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density by considering larger values of P . 
One might think that, because the above discussion is based on the 

assumption that the cloud remains isothermal during contraction, the con­
clusions reached would be qualitatively different if the cloud is allowed 
to cool and thereby increase a. This is not so. If indeed the cloud cools, 
the effectiveness of the internal pressure in balancing self-gravity along 
field lines is reduced. Further flattening of the cloud is inevitable which 
will tend to decrease the value of a. In fact, from our present and 
previous considerations, it seems that a self-adjusting mechanism is 
operative that maintains a close (if not smaller than) its initial value. 

b. Correlation between the External Pressure and the Central Density. 
The deduced correlation between the external pressure and the 

density at the cloud center (see figs. 11a, lib, and 11;) while a. and 
R. are kept fixed is shown in fig. IS as a critical st ite is approached. 
The states plotted have a. = 0.5 and R. = 2.4. The plotted values of P 
range from 1.1 to 3.9. This yielded densities in the range [4.1, 31.1]. 
As in the case of fig. 17, the scatter of points about the solid line was 
negligible. We reported in § VIIE3 that the state with P = 4.9 collapsed. 
A state with P = 4.0 yielded a central density of about SO, but we have 
not included it in fig. 18 because it collapsed for a slightly different 
choice of relaxation parameters. Apparently, not only are we close to 
the critical state, but the parameters of the equilibrium states close 
to the "plateau" of fig. 18 are very sensitive to P . This is reassuring 
for the following reasons. 

The non-magnetic Bonnor-Ebert calculations showed a similar dependence 
of the central density on the external pressure. In fact, for each value 
of P two equilibrium states were possible: an extended one and a compact one. 
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That is , a plot analogous to that of fig. 18 reached a maximum for some 
p and then decreased for larger values of p . The branch of the curve 
with a negative slope represented unstable states: to maintain a larger 
central density, a smaller external pressure was required. The region of 
increasing P with increasing p represented stable configurations. 

We tried to dctemine one of the possible unstable equilibrium states, 
but our iterative procedure repeatedly led to collapse. This, together 
with the fact that fig. 18 is the analogue of the stable branch of the non­
magnetic equilibrium states, are taken as strong indications (although not 
a proof) that our iterative scheme can pick out only physically stable 
equilibrium states. Unlike the case treated in Paper I, no unstable 
equilibrium state can be determined by analytical means which we could 
then use to test our above assertion. 

The Bonnor-Ebert calculations showed that the maximum of the curve 
logP_ versus logp_ occurs at lower values of P_ as the mass of a cloud o c o 
increases. This reflects the effect of the stronger gravitational forces 
due to the larger mass. The analogous phenomenon occurs in our case. For 
example, the critical state of fig. 8c, which is characterized by the 
same a. as the states of fig. 18, has P * 0.9 and R i * 2.8 and, therefore, 
a mass larger by a factor (2.8/2.4) "1.6. Since its central density 
is 14.3, if we attempt to plot it on fig. 18 it would fall slightly below 
the horizontal axis and certainly leftward of the peak of the solid curve. 

The qualitative effect of varying a. is to shift the curve of fig. 18 --
to the left for a larger o, and to the right for a smaller one. This is 
so because the same external pressure causes a smaller compression and, 
therefore, a smaller central density the larger a. is. 
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c. The Ratio p /p_. c J 
We have seen that the ratio p /p_ increases as R. or P increases, 

c S 1 0 
while it decreases if a. increases. At a critical state, however, PC/P<-

increases as a. increases or as P decreases. This is intuitively clear, l o — 
A larger a. implies stronger magnetic forces, which can be overcome only 

by stronger gravitational forces arising from a denser central core. Simi­

larly, a weak external pressure does not aid the gravitational forces against 

the magnetic forces; to overpower the latter, a larger central condensation 

is required. Yet, this dependence of P_/P S on P is, in part, artificial. 

If P < 1 the cloud boundary would expand, provided that gravi­

tational forces were not present, so that pressure balance across the 

surface would be achieved. Even if gravitational forces are present, it 

is a well-known result that the radius of an isothermal (non-magnetic) 

cloud would tend to infinity as P + 0. In the magnetic case, the polar 

radius of the cloud will do so because the magnetic forces vanish along 

the axis of symmetry. The extent of the cloud normal to field lines will 

be limited because of flux-freezing. Since gravitational forces will main­

tain some degree of central concentration, the ratio p„/pc will increase 
c o 

as P (« p_ in our dimensionless variables) decreases. In this sense, o o 
this result is artificial. One can see this formally by integrating the 

force equation (149) from the center of the cloud to its surface along 

the axis of symmetry to obtain the dimensionless result: 

W p S } 

P c - P s • / <lsp 8 S- (194) 

Although p may decrease as P_ decreases, if we divide through by p c as 
C O o 

the latter tends to zero, p./pc will keep increasing. 

In spite of its "artificiality", the ratio p„/p_ is useful. If 
C d 
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it is measured to be large, one can deduce that the pressure of the 

external medium is snail. Since, as we have seen in § VIA (footnote 5), 

only an upper limit on the intercloud pressure is known, a by-product of 

obtaining an accurate density distribution within a dense cloud will be 

an irplied range of values for the intercloud pressure. To illustrate 

this point further, we present a critical state with P = 0.5 and a. = 1.0 

in fig. 19a and its usual column densities in fig. 19b. 

rhe radius R. is equal to 3.20. A state with R. = 3.21 collapsed for 

different sets of relaxation parameters; hence, we refer to the state with 

R. > -5.20 ai a critical state. The isodensity contours reveal that there 

is a very oblate central core o2 restively high density and a fairly 

extended envelop of relatively low density; the ratio P-/P S is equal to 23.0. 

(One .nay contrast the state of fig. lie characterized by P = 3.9.) The 

same effect is noted in the column densities of fig. I9b, where the curves 

o.(z) and o.(r) fall fairly rapidly at first and then a "knee" appears 

before they fall to zero at the boundary -- contrast fig. 12c. Clearly, 

there is a qualitative, as well as a quantitative, difference between 

states with large and states with small external pressure. One can utilize 

this difference to make a statement on the mechanism responsible for the 

formt ion of dense interstellar clouds. 

There are two alternative possibilities, (i) A cloud grows by 

slow accretion of matter (mainly along field lines) until self-gravitation 

becomes dominant, (ii) A rise in the external pressure increases the 

central density and thereby enhances the strength of the gravitational 

forces. Our solutions suggest that, at least in principle, one may dis­

tinguish between the two mechanisms from high-resolution observations of 

the distribution of matter within a dense cloud. The first mechanism will 
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produce an extended envelop of relatively (compared to the core) low 

density with a more or less cylindrical boundary, whereas the second 

mechanism will give rise to no such envelop and, in addition, will produce 

a cloud boundary more closely resembling in shape the interior isodensity 

contours. We remark that extended envelops appeared iT equilibrium states 

even when a. was small, as long as P was small, although in these cases 

the cloud boundary was nearly spherical. 

One might think that the ratio p /p c = 23.0 in the critical state 
c o 

of fig. 19a exceeds the Bonnor-Ebcrtcritical value mainly because of the 

"artificial" reason cited above. It is useful, therefore, to calculate 

P./pt where p is the mean density of the cloud. This ratio is expected 

to undergo a slower increase as P decreases. We recall that in the 

Bonnor-Ebert critical state this is 
(p /p) - 5.76. (195) 

C BE 
In the (magnetic) state of fig. 19a, we find that 

(P C/P) M • 6-9. (196) 

The effect of the magnetic field is still to increase this critical ratio. 

d. Critical States 

Critical states are equilibrium states on the verge of gravita­

tional instability. They are useful because they set theoretical upper 

Units on several observable cloud parameters (see S VI). We have pre­

sented only two such states, those of figs. 8c and 19a, characterized by 

(o^ - 0.5, P 0 » 0.9, R 4 * 2.8) and (aj « 1.0, P 0 * O.S, Rj « 3.20), 

respectively. We also alluded, in discussing fig. 18, that there is a 

critical state somewhat more compact than that of fig. lie. The physical 

quantities of a critical state depend on two of our three free parameters--
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the constraint of being on the verge of collapse removes one parameter. 
We determined most critical states by fixing a. and P and increasing R. 
until no further solutions could be found. Physically, this corresponds 
to the situation in which the ratio of the magnetic and gas pressures at 
infinity as well as the cloud density are kept fixed while the cloud radius 
increases (thus, including proportionally more mass than it docs flux). 

Quite generally, for a fixed a., smaller values of R. may collapse 
as P increases. For a fixed P , larger values of R. are required for 
collapse as a. increases. The former behavior simply states that as the 
external pressure contributes more to the contraction of the cloud, smal­
ler masses become able to collapse. The latter behavior states that 
larger masses are required for collapse if magnetic forces become strotigor. 
Since the values of a. and P are not known in reality, we shall confine 
ourselves to a discussion of the physical parameters of a single critical 
state, that of fig. 19a, in a dimensional form. The conversion formulae 
that follow may be used to find the dimensional parameters of any other 
state presented. When observations provide us with the necessary informa­
tion on dm/d# and P , it will be worth returning and extending this dis­
cussion. 

2. Returning to the World of Dimensional Quantities 
Diaensionless quantities are indispensable in solving a problem, but 

often their numerical values have a meaning only for the particular author 
and a few devoted readers. It is imperative that at least one example be 
provided in dimensional form. We choose the critical state of figs. 19a 
and 19b because a. = 1.0 and P » 0.5, yielding <%0 = 2.0, a value close to 
what we currently believe as representative of conditions in a spiral arm 
behind a galactic shock (see Paper II, i II). It is, however, impossible 
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at present to decide whether the value a. = 1.0 is representative of 
conditions which would prevail if we (mentally) took a dense cloud and 
expanded it in such a way that the field lines straightened out while its 
density became uniform (see also discussion below). To know the value 
of a. requires a detailed knowledge of how dense clouds form -- an open 
question in theoretical astrophysics. Under the additional limitation 
that the true mass-to-flux ratio of a dense cloud may be very different 
from the assumed simple function (see S VIIB), we proceed with our example. 

He let T- 0 denote the cloud temperature (T) in units of 50°K and 
x P,_ denote the intercloud pressure (P e x t) i n units of 1800 k deg/cm . Then 

the isothermal speed of sound in the cloud is (see eqs. [95] and [96]) 

C - 0.64 (T 5 0 / p ) 1 / 2 km/sec. (197) 

Let P be defined by 
P o " F « t " i C*. ( 1 9 8> 

where p. is the uniform cloud density in the spherical initial state and 
is related to the initial number density (n.), including helium, by 

pi * n i u V ( 1 9 9 ) 

By solving eq. (199) for n. and using eqs. (197) -- careful with the 
units! -- and (198), we find that 

n i " 3 6 P18 / Po T50 C m " 3 * < 2 0 0> 

The number density of hydrogen is obtained from the total number density 
through division by 

n - 1.1 for H I clouds; (201a) 
- 1.2 for H 2 clouds. (201b) 
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If the dimensional initial cloud radius is R ., then 

%t = »i C/(4 IT G p . ) 1 / 2 

2.92 R. VlJ2 T 5 0/y P J £ 2 pc. 
(202) 

where we have used eqs. (198) and (197) to eliminate p. and C, respectively. 
To convert the oolumn (or, surface) densities af and o. of figs. 9, 

12, 15, and 19b to dimensional form, we need to multiply by the unit of 
1/2 

density, p., and the unit of length, C/(4TTGP.) . We denote the dimension­
al surface density by o and we easily find that 

• s - 0.54 x 10 3 ( P 1 8 / P 0 ) 1 / 2 * J / ( gm/cm2, (203) 

where a, and a. are shown in the aforementioned figures. The (number) 
column density of hydrogen (not the total) is, of course, obtained from m 
through multiplication by (nufflu)' , that is, 

N H * 2.3 * 1 0 2 0 ( P 1 8 / P 0 ) 1 / 2 * I f { o" 2. f o r H r clouds; (204a) 
l 

and 

N„ - Nu/2> f o r molecular clouds. (204b) 

The mass of the cloud is given by 

M * (4 it/3) ot 1?ol 

. 9 1 . 8 R j p y 2 T 2

0 / p 2 P ^ 2 Mg. (205) 

Finally, from the definition of a. we obtain 

*t - (8 * P l C 2 o ^ ) 1 ' 2 

- 2.5 (aj P 1 8 / P 0 ) 1 / 2 Mgauss. (206) 
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In solving our problem we expressed the density and the magnetic field 

in units of their initial values. So, to find their dimensional values 

in an equilibrium state, say at the cloud center, one simply takes the 

dimensionless values in that state and multiplies hy the results obtained 

from eqs. (200) and (206), respectively. 

For the critical state of fig. 19a (c^ = 1.0, Pfl = 0.5, ^ = 3.20) 

and its corresponding initial state, we calculate the following values 

in the case of an H I cloud with T * 50°K and an intercloud medium with 
p-v* - 1800 k deg/cnT. 
CX*L 
Initial State: 

<i« 0.57 km/sec 

M - 1320 Mg (compare eq. [97a]) 

n. -
i 

72 cm - 3, n t(H) «65.4 cm 

R * l - S.2 pc 

*i" 3.54 ygauss 

Pinal State: 

n * 828 
c 

cm" 3' n (H) » 753 cm*3 

c 
n s - 36 a.'3. n g(H) - 32.7 cm*3 

ii - 122 cm-3, ii(H) « 111 cm*3 

r - 4. max 76 pc 
z « 2. •ax 60 pc 
B « 9. c 42 ugauss 

a/a. • 0.62 

-3 (207) 

N H(r • 0) - 4.52 x io 21 

22 -2 Njjtz » 0) - 1.0 * 10 cm 

• s(r - 0) * 10.6 x 10* 3 gm/cm2 

,(z « 0) - 23.5 « 10* gm/cm 

(208) 
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The quantity N„(r = 0) denotes the column density of hydrogen when the 

line of sight is along the axis of symmetry, and N„(z = 0) when the line 

of sight lies in the equatorial plane and passes through the center of the 

cloud. The quantities m (r = 0) and m (z = 0) have a similar meaning. 

Since a telescope beam has a finite angular width, however, the observed 

column densities will be smaller than the maximum values. We therefore 

calculated the ratio m_. - (total mass/area normal to the line of sight) 

for the above two orientations of the line of sight -- this is the quantity 

observed if the cloud lies entirely within the telescope beam. Values 

for other viewing angles will lie between these two. We find that 

3.9 x 10" 3 S i ^ S 5.7 K 10" 3 gra/cm2. (209) 

The ratio of m_ M and Mestel's critical value is (see eq. [108c]) 

1.9 s m^/li^ * 2-8. (210) 

Indeed, equilibrium calculations, in addition to giving us the detailed 

structure of a cloud, have faired better than non-equilibrium calculations 

in predicting the parameters of a critical state. 

The maximum observed column density of atomic hydrogen is 3 * 10 

cm (van Woerden 1967). Our calculations indicate that such a cloud is 

not collapsing. The rest of the calculated physical quantities are either 

reasonable, or exceed the observed values -- a desirable result. We 

mentioned in S VIA, however, that the scarcity of H I clouds with masses 

larger than 1000 KL pay be due to their conversion into molecular clouds. 

How, then, do our results compare with observed quantities in dense (dark 

or aolecular) clouds? (Before leaving H I clouds, we note that the state 

of fig. lie corresponds to a mass of 1554 M_ for the same "standard" para­

meters as assumed above.) 
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Ne take T = 10'K, appropriate to a dark cloud, and P = 1800 k 
deg/cm . The mass now becomes (see eq. [205]) only IS.7 M_, while the 
final central and mean densities have increased to n (H.) = 3.4S * 10 

c 2 • 
cm" and n(H.) = 508 cm" . The calculated equatorial and polar radii of 
such a cloud are (see eq. [202]) i = 0.75 pc and i - 0.41 pc. Al-
though the maximum density is well within the range of observed values 

3 4 - 3 
(10 - 10 cm ; see i VIA) and the predicted dimensions are in good agree­
ment with observations, the total mass (of this particular equilibrium 
state) is a factor of about 6 smaller than the observed values. In spite 
of the possibility that the observed values may be overestimates, as we 
remarked above, we do not think that that is the major source of discrepancy, 
whose sources are very likely to be the following. 

(i) The simplifying assumption that a dark cloud has the same 
mass-to-flux ratio as some uniform reference state. We have already 
discussed the uncertainties accompanying the assumed dm/dt as well as the 
values of a,. 

(ii) Matter in the immediate neighborhood of a dense cloud is 
unlikely to have a negligible density. This would invalidate our assumption 
that the external medium is force-free. Although we had formulated the 
problem in subsections Al and A2 above without imposing this condition, 
we solved it only with the force-free approximation of the intercloud 
medium. Mien the parameters of this medium are better known, especially 
in the neighborhood of dense clouds, it will be worth solving the more 
general problem. An external medium which is not force-free is also 
likely to permit a larger lateral contraction of a cloud and, therefore, 
a larger enhancement of the magnetic field. As long as the external 
medium is force-free, even with an external magnetic pressure small 
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compared to the intercloud thermal pressure, enhancements of the field 
by more than an n„'der of magnitude are difficult to obtain. 

(iii) If the galactic gravitational field is introduced, in which 
case the boundary condition of uniform field at infinity must be substituted 
by a more realistic, periodic boundary condition, the field lines in the 
intercloud medium will inflate in the manner described in § V. This will 
weaken the general intercloud field -- and it is the mean value of this 
fisld (not of a uniform one) along the line of sight which we measure as 3 
ugauss. Thus, the ratio B /B a will also increase. 

(iv) We have sought solutions with O.S £ P s 4.9. Since the di­
mension less quantity P is the ratio of the intercloud and the cloud 
pressures jw the uniform initial state and since we assumed an isothermal 
transition from an initial to a final state, it might have been more 
appropriate to have chosen P > > 1. Dense clouds have relatively low 
temperatures. Moreover, when (mentally) expanded to a uniform state (say, 
R , increases by a factor of 2 or 3), their densities will drop by a 
factor 10 - 30. If they are in pressure equilibrium in their final states, 
then a P " 10 - 30 would describe conditions existing in the initial states. 
Because of eq. (189) and since we have argued that a is roughly equal to 
unity, it follows that a. » 20 would then be more appropriate for dense 
clouds. As our results can show by a reasonable extrapolation, an equili­
brium state with such paraaeters will be highly flattened. Such configura­
tions are, in fact, observed at least within the Orion cloud complex (see 
Morris et al. 1974). 

3. Line Widths in Dense Clouds 
Supersonic turbulence as a source of th„ observed line widths in dense 

clouds has already been ruled out on the basis of its short life time (see 
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§ VIA). Motions associated with gravitational collapse could explain in 
a natural way the observed large line widths (see § VIA for references) 
if only some decrease in the line widths takes place as one observes 
regions further from the cloud center. One can see why this is so as 
follows. A cold, spherical, non-magnetic, massive cloud would collapse 
under self-gravitation with a free-fall velocity 

v(|x"|) = -12 GMC|x|) / | x | ] 1 / 2 . (211) 

where M(|x|) is the mass inside the radius |x|. If one assumes that the 
density is uniform, it follows from eq. (211) that 

v(|x|) - |J|. (212) 

In this picture, the line of sight going through the center of the cloud 
will detect the largest radial velocities, which, in turn, will produce 
the largest line widths. 

It is well known, however, that, if gravitational forces are present, 
a central condensation is inevitable. A density which decreases as ]x| 
increases could give rise to a free-fall velocity that increases toward 
the cloud center. Equation (211) shows that this will be the case if P 
falls off more rapidly than |x|* . The observable implications of such 
a case would be that the center of a spectral line would be formed at the 
outermost layers of the cloud while the wings of the line would be produced 
at the cloud center. Observations show that the most intense radiation 
comes from the cente-* of a cloud and that the center of a spectral line 
is more intense than its wings. This seems to suggest that the density 
must fall off less rapidly than |x|" . 

Equation (212) is usually used in referring to collapsing clouds. 
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Then the argument is made (for example, see Morris et al. 1974) that 
because line widths do not vary much between the center and the boundary 
of a cloud, collapse cannot be taking place. This is erroneous because 
collapse may in fact be taking place in such a manner that 

v(|x|) « |x| k , (213) 

where k is a positive constant less than one. 
Zuckerman and Palmer (1974) also claim that the collapse hypothesis 

is ruled out by the high rate of star formation that would be implied if 
all dense clouds were collapsing. We remarked in S VI that this is not 
so if star formation is not an efficient process. Observational evidence 
indicates that indeed star formation does not proceed with a 100 percent 
efficiency (see review by Shu 1973b). Massive clouds often contain 10 -
10 M-, while the mass of stellar clusters in the Galaxy is smaller than 
10 5M^. 

The traditional theoretical argument that has been advanced to support 
an inefficient star formation process is that, following star formation, 
the bulk of a massive cloud will be dispersed. A typical OS star, the 
argument continues, would emit about 10 ergs during its lifetime mostly 
in the ultraviolet. A type II supernova liberates a comparable amount of 
energy. This energy would seem sufficient to disperse a 10 M_ cloud, 
whose (negative) gravitational energy is typically 10 ergs. This argument 
is fallacious because kinetic energy is not conserved. One must consider 
the conservation of linear momentum in each element of solid angle during 
spherical expansion of the gas. In the case of a supernova (ejected mass 
m < 1 M_) and an OS star, the velocities imparted to the gas of mass M c 

(10* - 10 6 Mg) are, respectively, 
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v g s = ( 2 m E ) 1 / 2 / M c 

iD 
(214a) 

10* 1 m 1 / 2 ( — J km/sec 

and 
vg.* = E / c Mc 

* 10" 3 d) (214b) 
10 I I km/sec, 

where m and M are measured in solar masses and E • 10 ergs. Even for c 4 M as snail as 10 M_, v is less or nuch less than the speed of sound in 
the gas. If star formation is an inefficient process, the cause must lie 
elsewhere. Ne shall offer a likely explanation below. Now we continue 
our discussion of line widths. 

Zuckerman and Evans (1974) have advanced an interesting argument 
against the collapse of dense clouds. In the presence of a large-scale 
contraction, in which velocity increases with distance from the cloud 
center, photons emitted from the far side of the cloud (for example, by 
00 molecules) are somewhat blue-shifted so that they are not absorbed by 
intervening matter. Thus, one "sees" through the entire cloud. A molecular 
species (such as H.CO), however, that absorbs radiation emitted by H II 
regions found near the cloud center, must be located between the center and 
and the nearest edge of the cloud. Since the cloud is collapsing, by 
assumption, the absorbing species must be moving away from the observer. 
Consequently, absorption and emission lines within a single dense cloud 
must exhibit a relative shift in radial velocity. Since such a shift is 
usually smaller than one-fourth of the CO line width, Zuckerman and Evans 
interpret this as evidence against collapse. 
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The alternative}u-op9sed by Zuckerman and Evans to explain the large 
line widths in molecular clouds is extremely unattractive. They suggest 
that 50% of the mass of a dense cloud exists in the outer 20% of the radius 
without explaining how that much matter can be supported against gravity 
at that distance — whatever happened to Newton's second law? In addition, 
they assume that the cloud (M ~ 10 *U) is broken up into chunks of about 

10 Mg and that it is the more or less random motion of these objects that 
is responsible for the observed line widths. How these objects avoid one 
another remains a mystery. Why they themselves do not collapse, since 
they more than satisfy the Bonnor-Ebert critical condition (see eq. [97b]), 
is left unanswered by the authors. 

An as yet unproposed mechanism may be able to account for the observed 
line widths in dense clouds: oscillations of a dense cloud as a whole 
about a stable equilibrium state such as any one of the states which we 
have calculated. Ne have argued above that a self-adjusting mechanism is 
operating in self-gravitating, magnetic clouds that tends to keep a close 
to its initial value, a.. Ne have also argued that it is reasonable that 
o. should be in the range 10 - 30, which implies a very flattened configu­
ration. Such a cloud can undergo oscillations that do not necessarily 
push it over the threshhold of gravitational instability. Two normal 
•odes are obvious. 

(i) The cloud contracts both along its major and minor axes 
simultaneously; this mode could conceivably lead to collapse. 

(ii) The cloud expands along its minor axis (axis of symmetry) 
while it contracts in a direction normal to the field, and vice versa. 
Such oscillations cannot cause collapse — recall that one dimensional 
compression along field lines due to self-gravity cannot proceed indefinitely. 
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The question is whether such oscillations can be maintained for times 
exceeding the free-fall time. A plausibility argument indicates that 
they can. The only significant damping mechanism is the dissipation of 
energy in hydromagnetic shocks. However, since the Mach numbers implied 
by observations are in the range 2 - 4, an a. as small as 8 will suffice 
to prevent the formation of such shocks. This possible mechanism for 
interpreting large line widths in molecular clouds certainly warrants a 
more careful future investigation. One could solve an initial value 
problem, in which some displacement or velocity is given to the cloud 
elements of an equilibrium state. We only remark here that an increase 
(temporary or permanent) of the intercloud pressure (say, due to passage 
through a spiral density wave) may set a dense cloud into such an oscil­
lation. 

4. Why is Star Formation Inefficient? 
Mestel (1965) pointed out that a collapsing cloud may fragment be­

cause of flattening — recall that Strittaatter (1966) demonstrated that 
a highly flattened, unifora ellipsoid can collapse noraal to the field if 
its aass is only about 1/2 that required for the collapse of a spherical, 
unifora cloud of the saae aass and flux (see S VIC2b). This permits a 
cloud and all fragaents to remain "strongly magnetic" (in Mestel's words) 
throughout the collapse stage. However, stars either have no magnetic 
fields at all or very weak fields compared to those which would be implied 
if the interstellar field remained frozen in the natter. Therefore, at 
soae stage of the star formation process, the field must either dissipate 
or diffuse through the matter -- the latter being a more likely process 
(see f VIB). Mestel (1966) argued that, as a cloud contracts, the nearly 
oppositely directed field lines at the equatorial plane give rise to strong 
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"pinching" forces that dissipate flux, reconnect field lines, and the 

magnetic field of a clcud is effectively detached from that of the back­

ground medium. He think that pinching forces are peculiar to Mestel's 

spherical, non-equilibrium model discussed in I VIC2a. Moreover, this 

sequence of events would lead to a rather efficient star formation --

contrary to observations. 

There is an alternative possibility. Our equilibrium calculations 

support the idea that the cloud flattens. But, for this very reason, no 

pinching forces appeared in the equatorial plane. We think that, after 

collapse sets in and flattening proceeds further, the increasing curvature 

of the field lines will stop further lateral contraction of the outlying 

(but not the central) layers of a cloud near the equator. Thus, the 

field may not detach from the background. The criterion for this to take 

place is that the tension of the field lines overwhelm gravity near the 

equator. Roughly, the tension is inversely proportional to the thickness 

of the cloud, and the gravitational force is inversely proportional to 

the second power of the equatorial radius. Hence, contraction will 

stop in this region if only the ratio r _ /r increases upon contraction. 
Max max 

This is not too stringent a condition. It is conceivable that a substantial 

fraction of the cloud mass is "left behind" while the cloud core engages 

in the exciting process of star formation. 
10\ Ne are assuming here that the cloud is approximated by a thin disk of 

high central density and that it contracts through a sequence of quasi-
equilibrium configurations (see S VIII below). Since the intercloud 
pressure is fixed and the cloud isothermal and since pressure is 
continuous across the cloud surface (see eq. 1150]j, the gas density 
just inside the equator will remain fixed (see eq. [151])- This 
situation is substantially different from a contracting thin disk 
of uniform density throughout, in which case the gravitational force, 
pg , varies as (*/?£._ t

m~x^ • * n t n e latter, less realistic case, 
one would conclude tnat once gravitational forces exceed magnetic 
forces, contraction would continue indefinitely. This erroneous 
conclusion is the norm in current thinking. 
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VIII. EQUILIBRIUM CALCULATIONS AND STAR FORMATION 
Star formation is a process for which, at least most directly, a 

gravitational instability is responsible. It is impossible to understand 
(not merely to simulate) the initiation of this process theoretically with­
out having some equilibrium state at hand on which one can perform a 
stability analysis. One may undertake a multitude of time-dependent 
numerical calculations with an infinite variety of initial and boundary 
conditions, such as a very large mass within a very small, fixed radius, 
that leave no alternative to a cloud (invariably assumed to contain no 
magnetic fields) but to collapse (see, for example, review by Larson 1973). 
What are often presented as very significant results of such calculations, 
for example, a high-density central core and an extended envelop in 

-2 
which p * r , can in fact be deduced without resorting to lengthy, time-
dependent numerical procedures. A central condensation is an inevitable 
consequence of the presence of gravitational forces. Furthermore, the 
variation of density as r stems from the existence of a simple simi­
larity solution for the equations of motion (see Larson 1969). As for 
the remaining conclusions of such calculations, they have to be revised 
substantially when a magnetic field is present. 

The accessible equilibrium states of (a model of) the magnetic 
cloud-intercloud system, on both a large and a small scale, are not use­
ful merely for performing stability analyses on them. Since their physical 
properties are usually determined by a small number of parameters (one in 
the large-scale problem of § V, and three in the small-scale problem of 
S VII), it is possible to predict in advance of any numerical time-
dependent calculation whether the initial conditions are such that any 
equilibrium states are accessible to the system. In the case of self-
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gravitating clouds, it is certainly true that, if the initial parameters 
are specified such that an accessible state is close to a critical one, 
transient (such as inertial) effects may lead to collapse. This, neverthe 
less, enhances the usefulness of a knowledge of equilibrium states, rather 
than reducing it. Yet, equilibrium states are useful in a much more 
practical sense. 

First, they seem to exist on both the large and the small scales with 
which we concerned ourselves in this work. Second, as Mestel (196S) 
suggested, such a process as the free-fall of an interstellar cloud may 
be a rare phenomenon and that the rate of contraction may be limited first 
by the presence of magnetic fields, and, at a later stage, perhaps by the 
rate of diffusion of ions and the field through the neutral matter. In 
fact, Mestel (1965) suggests that star formation may proceed in a sequence 
of quasi-equilibrium configurations of strongly magnetic clouds, which 
flatten and fragment, but never actually free-fall. 

Observations, of course, will ultimately decide whether our equili­
brium calculations and their predictions have advanced our understanding 
of some of the processes (such as cloud formation, equilibrium, and 
stability) that are intimately related to the birth of star?. This is the 
way of science. 



-153- LBL-3602 

ACKNOWLEDGEMENTS 

This work would be incomplete without an expression of gratitude 
for Professor George B. Field for three years of personal tutelage and 
tolerance. The confidence with which I presented the numerical results 
on the Magnetic Rayleigh-Taylor instability is partly drawn from tests 
suggested by Dr. Paul Concus, whose interest in the numerical aspects of 
the problem made an otherwise tedious task a rewarding experience. The 
educational importance of the many "free-wheeling" discussions which I 
have shared with Professor Frank H. Shu can hardly be overemphasized. 
For her expert typing and her invaluable assistance on technical matters, 
•y sincere thanks go to Mrs. Ardie Rutan. 

The main source of support for this work was the National Science 
Foundation, under Grant GP-36194X. Support from the Theoretical Physics 
Group and the Mathematics and Computing Group of the Lawrence Berkeley 
Laboratory is also gratefully acknowledged. 



-154- LBL-3002 

TABLE 1 
MAGNETIC FIELD OBTAINED FROM ZEEMAN SPLITTIMG OF THE 21-cm LINE 

Direction I b vcloud ( L S R ) Field* 
(degrees) (degrees) (km/sec) (ugauss) 

Taurus A 185 - 6 +10 - 3.5 ±0.7 
• * - 1.5 ± 0.9 

Cassiopeia A 112 - 2 -38 +18.0 ± 1.9 
- 48 +10.8 ± 1.7 

Orion A 209 -19 * 7 -50 ± IS 
• 2 -70 ± 20 (?) 

M17 1 5 - 1 • 14 4-25 ± 10 

•A negative value indicates a direction toward the observer. 
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LEGENDS FOR FIGURES 
I 

A typical perturbation of the field lines of Parker's (1966) stratified 
initial state (schematic). The system is periodic in x and extends 
to infinity in y. There is reflection symmetry about the x-axis. 
Some field lines are left undeformed by the pe turbation. Note that 
the deformed field lines curve in an opposite sense above and below 
each undeformed field line. 
Two field lines. A and A*AA, started out bting close together in the 
stratified initial state. As expansion c cur- at the "wings" (that 
is, at x • X) of a condensation, their peak-to-peak vertical separation, 
h, increases. The mean value of the m ^netic fieiJ, 8, between 
points a and b var'.os as h" . So, th magnetic-pressure force 
CjB /8n|, which tends to inflate the field lines further, varies as 
h" . However, the tension of the field lines, |B (3s/3s) |/4ir, in 

-2 -1 the space between a and b varies as h X , where the horizontal 
wavelength X is fixed and s is a unit vector tangent to a field line. 
Thus, the field lines will not expand indefinitely. [Note that 
| 3s/3s| = (radius of curvature)" * X ' .] 
Variation of the magnetic f eld with y at the valley (x = 0) and the 
wings (x * X) of the condensation of Fig. 2c of Paper I. The field 
of the stratified initial state (in which a = 1) is also shown for 
conparison. The field .s normalized to its value on the x-axis in 

2 the initial state. The unit of length is C /g. 
Variation of the gas density with y at the valley (x = 0) and at the 
wings (x » X) of the condensation of Fig. 2c of Paper I. The density 
of the stratified initial state (in which a » 1) is also shown for 
comparison. The density is normalized to its value on the x-axis 

2 in the initial state. The unit of length is C /g. 
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5. The dependence of the ratio of the magnetic-to-gas pressure on y 

at x = 0 and x = X in the equilibrium state of Fig.. 2c of Paper I. 

Note that a varies considerably with position even though it was 

equal to unity rverywiiere in the initial state. 

6. Vertical gravitational field of the Galaxy (taken from Oort, 1965). 

7. The geometry used in 5 VII. There is axial symmetry about the 

z-axis and reflection symmetry about the plane z * 0. Instead of 

the cylindrical coordinates (r, z), it is often convenient to use 

the non-orthogonal coordinates (•, z) , where *(r, z) is constant or. 

a magnetic surface (see Eq. {125]). For a fixed z, we effect the 

change of variables from r to * by dr = d*(3r/3*). The cloud boundary 

•ay be specified by the function 2 « Z (*). 

8a, 8b, 8c. Equilibrium states characterized by the same a. (= 0.5) and 

P (- 0.9) but different R. (= 2.S, 2.7 and 2.8, respectively) --

see 5 VIIC for units. In each figure, we label both axes in units 

of the initial radius of the cloud, R.; the scale is the same for both 

axes. The curves bearing arrows represent field lines; each is 

labeled by its r-coordinat- in the initial state (see § VIIB), in 

which field lines are equidistant and parallel to the z-axis. The 

solid, oblate curves are isodensity contours and they are labeled by 

the value of the density in units of the (uniform) density of the 

initial state. The dashed curves are contours of equal magnetic-

field strength ("isopedion" contours). They are labeled by the 

magnitude of the field in units of the (uniform) field of the initial 

state. 

From the isodensity and isopedion contours of each figure, 
2 one may estimate a at equilibrium by using the formula a f = a. Bf/p,. 
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9a, 9b, 9c. Column (or, surface) densities for the equilibrium states 
of figs. 8a, 6b, and 8c, respectively, for two orientations of the 
line of sight. In each figure, o.(r) denotes the column density as 
a function of distance from the (z-) axis of symmetry (the line of 
sight is parallel to the symmetry axis); 0~(z) is the column density 
as a function of z (the line of sight is parallel to the equatorial 
plane, z « 0); the column density of the corresponding uniform initial 
state is labeled by a.. For ease in comparing an equilibrium state 
with the uniform initial state, the horizontal axes in each figure 
are labeled in units of the initial radius of the clot J, R.( =2.5, 
2.7, 2.8, respectively, in figs. 9a, 9b, and 9c). The unit of surface 

1/2 density is p. C/(4 irG P<) -- see i VIIC. Note that, since the 
magnetic field resists lateral compression, a-(r) has a smaller 
and shallower maximum than o.(z). The ratio a.(z - 0)/o~(r = 0) may 
be taken as a measure of the degree of flattening of the cloud. 

10. The function q(*) for each of the equilibrium states of figs. 8a, 
8b, and 8c. The abscissa is labeled ?n units of the total magnetic 
flux (2 n • ,) threading each cloud. Each curve is identified by 
the value of the cloud radius in the uniform initial state — see 
I VIIC for units. 

11a, lib, lie. Equilibrium states characterized by the same a. (*0.5) and 
R. (-2.4) but different P o (-1.9, 2.9, and 3.9, respectively). Iso-
density and isopedion contours and field lines are denoted and labeled 
as in fig. 8, 

12a, 12b, 12c. Column densities for the equilibrium states of figs. 11a, 
lib, and lie, respectively, for the same two orientations of the 
line of sight as in fig. 9. Notation and labeling of curves is as 
in fig. 9. 
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13. The function q(#) for each of the equilibrium states of figs. H a , 
lib, and lie. Each curve is labeled by the value of P in the 

o 
corresponding state. 

14a, 14b. Equilibrium states characterized by the same P (=0.9) and 
R. (« 2.S) but different a. (=0.2 and 1.0, respectively). Fig. 8a 
shows the equilibrium state with or. =0.5 and the same P and R. ^ l o i 
as the above two states. Notation and labeling of curves is as 
in fig. 8. 

15a, 15b. Column densities for the equilibrium states of figs. 14a and 
14b, respectively. For further details, see legend of fig. 9. 

16. The function q(«) for each of the equilibrium states of figs. 14a, 
8a, and 14b. Each curve is labeled by the value of a. in the 
corresponding uniform initial state. Notation is as in fig. 10. 

17. Relation between the enhancement of the central magnetic field and 
that of the central density. Each curve is labeled by the value of 
a, and represents many different equilibrium states (see S VIIFla 
for details). 

18. The external pressure (in units of the initial cloud pressure) plotted 
against the enhancement of the central density for a fixed value 
of o t and R t (see i VIIFlb). 

19a, 19b. A critical state and its column densities. The three para­
meters a., P , and R. have the values 1.0, 0.S, and 3.20, respectively. 
The properties of this s'ate are discussed in detail in S VIIF2. 
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APPENDIX A 

METHOD OF SOLUTION 
A Triple-Relaxation Iterative Procedure (TRIP) 

We write eqs. (177) and (178) formally as 

F(A) = Q(r, «, *; o^, R.) (Al) 

and 
LOIO = P(». * ) , (A2) 

where •(r, z). = rA(r, z). In eqs. (Al) and (A2), F and L are linear 
differential operators, and Q and p are nonlinear algebraic operators. 
Both Q and p vanish outside the cloud, whose boundary is defined by 

p[#(r, z), iKr, z)] = P = a constant. (A3) 

The boundary conditions on A and <li are specified by eqs. (182a) - (182h). 
We note that A(r, z) satisfies Dirichlet boundary conditions on three 
sides of the rectangle (the "large cylinder" of S VIIAS), whose corners 
are (0, 0), (0, Z), (R, 2), (R, 0), and Neumann on the fourth. The 
potential *(r, z) satisfies Dirichlet conditions on two adjacent sides 
and Neumann on the opposite two. 

Since each equation is formally similar (but not identical) to 
eq. (CI) of Appendix C of Paper I, we used a similar procedure to obtain 
a solution. The complication now is that eqs. (Al) and (A2) must be 
solved simultaneously. In addition, since neither • nor * are known be­
fore a solution is at hand, the location of the cloud boundary (see eq. 
[A3]) cannot be determined until the problem is actually solved. It must, 
therefore, be treated as a free boundary. 

We start with an initial guess A ( 0 ) , </°* and a cloud boundary 
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•V CA6) 

0 s e (n) '< 1, (A7) 

(n+1) 
* are provisional 

specified by a function Z , (4>l , p*- ') -- see fig. 7 -- which does not 
necessarily satisfy condition (A3). Note that p l ' is equal to unity in­
side the cloud and zero outside if the cloud boundary is initially spheri­
cal. We define a sequence of iterates by the recursion relations 

LC*S n + 1 )) = P ( n + 1 V n ) . * ( n )) (A4) 
*("•» = 4Cn) #(n) + ( 1 . #(n)j #(n+l) > Q , + ( n } < l (AS) 

and 
PtA*"*1') -Q(r. *("). *<"•»; v 

A(n*l) . , 0 0 A(n) + ( 1 . 9 ( n ) } A ( n + 1 ) > 

where n • 0, 1, 2, ... The quantities A; n ' and ij*, 
iterates and • ' , 6*n^ are the relaxation parameters at the nth iteration. 
Note that the right-hand side of eq. (A6) contains the latest iterate, 
ty . We discovered that large oscillations of the cloud boundary during 
the first few iterations (aconsequence of a bad initial guess) can be 
avoided and convergence be speeded up considerably if we also undcrrelaxed 
the boundary itself by taking 

z(n*l) . x(n) 2(n) + (> . x(n), ^ n ^ „ s x(n) K ^ ( M ) 

where we have simplified the notation by omitting the arguments; a sub­
script * on Z , means that the arguments are the starred quantities A 
and • in the indicated iteration. The physical meaning of eq. (A8) is 
that a slight violation of the conservation of the mass-to-flux ratio is 
allowed during the first few iterations. Without eq. (A8), this conservation 
law is imposed exactly through eqs. (179) and (180). If, instead of 
choosing 
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p l * 1, inside the cloud; 
«= 0, outside the cloud 

and a spherical cloud boundary, we chose an elliptical cloud boundary with 
semi-major axis equal to R. and semi-minor axis Z.< R., convergence was 
further speeded up. In such a case, of course, p ( ' must be multiplied by 
R./Z. in order to maintain a mass-to-flux ratio appropriate to the spheri­
cal reference state. 

Ne say that a solution is reached if the conditions 
, A(nU) _ A ( n ) , 

Af"*» 

!*("•« . *<»>| 

< e r (A9) 

< e, (A10) 

and 
, p i T — '2 

l*& 1 }-*£ }| < «jW (*"> 

are satisfied simultaneously. The quantities e. and e- are small positive 
constants that can be chosen at will to achieve desired levels of accuracy. 
Similarly for c., except that it depends on the local mesh size -- we 
employ a nonuniform mesh; see below. 

As in the problem solved in Paper I, we chose a set of field lines 
(15 - 30 within the cloud and at lecst 10 in the intercloud medium), 
{*,), i • 1, 2, ... I, and we followed them from iteration to iteration 
until they settled down and the solution criterion (A9) • (All) was 
satisfied. We usually found solutions within a number of iterations vary­
ing from 3 to about SO (each takii.g less than O.S seconds of CPU time on the 
CDC 7600 computer), depending on our initial guess and solution criteria. 
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However, we often forced .the program to continue for over 100 iterations 
in order to determine its asymptotic convergence properties. We determined 
that, with e. = E_ = 0.01 - 0.02 and e 3(z) s (half the local mesh size) and 
the additional requirement that eqs. (A9) - (All) be satisfied by several 
successive iterations (usually 1(0, a solution was within one percent of 
that obtained with much stricter solution requirements, which necessitated 
a number of iterations usually two or three times larger. 

Since any rapid variation of the functions in our equations is 
e. pected to occur within the cloud or in its immediate neighborhood, we 
employed a nonuniform mesh such that at least 15 mesh points existed with­
in the r-extent and at least 10 within the z-extent of a cloud in the 
equilibrium state (not just the initial guess). On the other hand, as 
few as 10 mesh points would represent a region of the intercloud medium 
ten times larger than the initial radius (R.) of the cloud with practically 
the same accuracy as 30 mesh points, because of the smooth and very slow 
variation of the various functions there. It was essential, however, 
that the transition between the fine mesh and the coarse mesh be smooth. 
A smooth transition often made the difference between obtaining a solution 
within a relatively small number of iterations and not finding a solution 
at all. 

11M calculation of the right-hand side of eq. (Al) was done in much 
the same way as that of the right-hand side of eq. (CI) of Paper I. Once 
that is done, the right-hand side of eq. (A2) is obtained by simple 
multiplications and exponentiations (see eq. (178]). Kith Q and p known, 
the Poisson equation for * and the Poisson-like equation for A are solved 
by a fast direct method developed by Swarztrauber (1972). Since, in ob­
taining Q we used substantially the same routines as in Paper I, the 
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accuracy may be expected to be comparable with that shown in Table 3, 

Paper I. That cannot, of course, be taken for granted. To test the 

accuracy of the present program we used values of R. small enough for 

self-gravity to be unimportant (we avoided large values of P that would 

bring gravitational forces into play by compressing the cloud) and we 

compared the numerical solution with one that can be obtained very easily 

under these conditions through analytical means. They agreed to within 

one percent. This does not necessarily reflect the accuracy of solutions 

obtained with a large R., or a large P . Since no exact equilibrium 

solutions are known in the general case, we could only use as an indication 

of the accuracy of our program the following criteria. 

(i) Doubling the number of mesh points in each direction changed 

a typical solution by at most one percent. 

(ii) Varying the values of R and 2 (see S VIIAS) by a factor of 2 

produced changes of less than one percent in a solution. 

(iii) Forcing the program to continue for over 100 iterations altered 

a solution by at most 4 percent in the value of the central density (it 

depends exponentially on $; see eq. [128]} while all other functions exhibited 

considerably smaller changes. 

(iv) A slight change in the values of the relaxation parameters 

changed the number of iterations required to reach a solution, but the 

solution itself changed by less than 2 percent. When this test was 

perforaed on a critical state, it sometimes collapsed because of numerical 

noise. 

The accompanying chart shows the flow of calculations in the pro­

gram. Each "box" contains the function calculated at that point. The 

basic process or equation needed for that calculation is indicated by 
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information written by the arrows. When the arguments of a function are 

r and z, the values of the function are known at the mesh points. When 

an argument is *, the function is known along field lines. We found it 

both expedient and essential to use two interwoven meshes and to switch 

back and forth, through interpolations, at crucial points in the program. 

One mesh (r, z) is fixed. The second mesh (*, z) is defined at each 

iteration by the current position of the field lines. In the chart we 

use the follwoing abbreviations for economy of space: 

FL B field line 
INTRPL = interpolate 
C1B a Cloud Boundary 
UR E underrelax 
Sin B Solution 
DERIV = take derivative 
1NTGR = integrate 
rhs = right-hand side 

He note that as long as Q and p are given whatever values they may 

inside the cloud and set equal to zero outside, eqs. (Al) and (A2) are 

solved over the "large cylinder" without additional regard to the location 

of the cloud boundary. Continuity of all physical quantities that must 

exhibit such property across the cloud boundary was proven in § VIIA4. 

(NOTE: Flow Chart is found on the following page) 
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Program Flow Chart 

Set up nonuniform mesh; small mesh 
spacing within the cloud in both r and z 

Guess ^ ( r , z ) , A (r ,z ) and a C1B,Z , ( § ,̂ > ) . 
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APPENDIX B 

Reprint of "Paper I" which is referenced in the text. 
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ABSTRACT 

We present equilibrium slates of the interstellar gas, which has run down the perturbed Magnetic field lines 
of a stratified, isothermal initial slate under the action of a vertical galactic gravitational field. The final stales 
are lower in total energy than the corresponding initial states. Their properties depend quantitatively on ihe 
horizontal (but not so much on the vertical) wavelength of the initial perturbation. A striking feature of the 
final slates is that the scale height of the gas increases (decreases) where the g.is density increases iilccrejsc>i 
A connection between iniliai and final states is made by conserving the muss-to-flos ratio in eaJi llu\ luhv 
Thus, although we determine final equilibrium stales by solv ing a time-independent problem, in a time-dependent 
problem our final slates can be reached from the corresponding iniliai states through continuous deformations 
of the field lines. The final states are consistent with observations m ihe solar neighborhood We treat die 
interesting case of the magnetic pressure being initially comparable lo the pressure of the thermal uas. 

We show that the isothermal gas-field-gravity system possesses an "energy integral." An effective potential 
energy is identified, and an "energy principle" follows as a corollary. The iterative procedure used in order to 
solve the magnetohydrostalic equations is outlined, and upper limits on the numerical errors arc given. We 
also extend our formalism so that it can apply to the case of a genera) (rather than an isothermal) equation of 
.state. 
Subject headings: hydromagnetics — instabilities — interstellar matter — magnetic fields — plasmas 

/ I. INTRODUCTION 

The dimensions of many condensations of the 
interstellar gas are so large and the condensations 
themselves are so closely associated with the interstellar 
magnetic field that one may conclude that these large-
scale condensations could be produced by very long-
wavelength hydromagnetic disturbances. Parker (1966), 
using linear stability analysis, showed that the 
interstellar gas, which is partially supported by mag­
netic and cosmic-ray pressures against the Galactic 
gravitational field, could be unstable with respect to 
deformations of the field lines. Lerche (1967a) deter­
mined a final state for the interstellar gas and field 
system, in which Parker's tnagnetogravitational in­
stability had developed. Since he ignored the pressure 
of 'he gas. the final state consisted of infinitesimally 
thin sheets of matter that extended perpendicular to 
the galactic plane. This state is unstable with respect 
to small horizontal displacements of the gas elements 
(Lerche 1967*). Parker (1968a) found a different 
equilibrium state, but at the same time he pointed out 
the very special nature of his soluv'on because of a 
simplifying mathematical assumption made (see $ Ha 
below). 

In this paper we assume strict flux-freezing and we 
derive a general nonlinear, elliptic, second-order, 
partial differential equation, a subset of whose solu­
tions properly describes equilibrium states of the 
interstellar gas and field system in a galactic gravita-

* This work was supported mainly by the National Science 
Foundation under grant GP-36194X, and in part by the 
Lawrence Berkeley Laboratory under the auspices of the U.S. 
Atomic Energy Commission. 

tional field (§ Pa). In S Hh. by making use of constants 
of Ihe motion, we remove an arbitrariness that would 
otherwise exist in the source term of this equation. 
This allows us to make a connexion between initial 
and final slates, even though we solve a time-indepen­
dent problem. The boundary conditions and the 
assumed initial slate are presented in J III. In $ IV we 
obtain and discuss an "energy integral" of the iso­
thermal gas-field-gravity system and we i-ndeavor to 
anticipate what energy changes will take place as the 
system makes a transition from an initial to a final 
stale. The physics corresponding to each step of the 
method of solution is explained in $ Va. Indications for 
the physical stability of the final states are discussed 
in § \b. We present three typical final states in S VI; 
important features and obsenalional predictions are 
discussed in some detail. In $ VII we make a few 
concluding remarks and a semiquantitative com­
parison with observations in the solar neighborhood. 
Mathematical derivations that would interrupt the 
continuity of an argument, together with a description 
of our iterative scheme, are left for the appendices. 
The generalization of our formalism, so that it can 
apply to equations of state P - P{p), is also left for an 
appendix. 

It. HYDROSTATIC EQUILIBRIUM INCLUDING 
FLUX-FREfcZING 

a) Reduction to One Equation 

Consider a conducting gas of density p and pressure 
P in hydrostatic equilibrium in a magnetic field B and 
a gravitational field g, derivable from a potential </>. 

37 
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Denoting the current density by j, we may write the 
magnetohydrostatic force equation as 

- W» - fV<j, + j X Bjc = 0 , (!) 
where c is the speed of light in vacuum. The quantities 
B and/ are related by Maxwell's equation 

c V X * = 4 i r / . 

The equation of state is 

(2) 

(3) 

where C is the isothermal speed of sound in the gas. 
In this paper we take C = constant. If a magnetic 
vector potential, A, is defined by 

* - VXA, <•*) 
then Maxwell's equation 

(5) 

is satisfied identically. 
Following previous authors, we assume that all 

quantities are independent of z (2D geometry) and 
that B, = 0. Then Bx = +dAI?y, By - -BA/Hx, and 
the magnetic vector potential can bt written as A = 
e,A(x,y). Since » « -e,X?A, it follows that 
B-VA » 0, so that A is constant on a field line. As­
suming flux-freezing, one can showafcata-ftUarffcao* 
that A is a constant of the motion in the flow associated 
with Parker's instability. Each field line, therefore, 
retains its initial value of A. 

We define a scalar function of position, q\x, y), by 

q-PexpWC), (6) 

and we write equation (1) in terms of A and q as 

jVAIc-npi-VCWq. (7) 

Decomposing equation (7) in directions parallel and 
perpendicular to field lines and recalling that A is 
constant on a field line, we can show that 

Pc\p(+jC*) i ( - constant on a field line « q(A); 

(8) 
and that 

distributed among field lines so thai the forces parallel 
to field lines are in exact balance [i.e., q* - q'{A*)]. 
then we can balance the forces in a direction perpen­
dicular to the field lines by calculating a current density 

j* from equation (9). Howrver, B* and./* will not be 
consistent with each other unless they have satisfied 
equation (2), which may be written in terms of A, with 
j eliminated in favor off, as 

™--«-a «*(-£)• (10) 

So far, equation (10) differs from an equation derived 
by Dungey (1953) only in that our </• is any gravitational 
potential. For example, 4> can be the gravitational 
potential of the Galaxy as a whole, or that of a dense 
cloud in the interstellar medium. In the former case, 
<l> can be obtained from Schmidt's (1965) model of the 
Galaxy; in the latter case, a Poisson equation for <l> has 
to be considered simultaneously with equation (10) in 
order to obtain a self-consistent solution. In this paper 
we take I/I to be due to the Galaxy as a whole. 

Let the gas and field system be in some initial state, 
in which Parker's (1966) magnetogravitational in­
stability develops with wavelengths Av and \ in the x-
and ^-directions, respectively. We take the system to 
be periodic in x (along the galactic plane) and we assume 
that the pair of (unstable) wavelengths (A,, AJ is the 
same everywhere in the Galaxy. Moreover, we assume 
that the magnetic field is frozen in the matter. In order 

sr5^ 

' exp ( f /C*) - constant on a field line 

dA (9) 

The quantity q, being a function of A at hydrostatic 
equilibrium, expresses the fact that, since magnetic 
forces act only perpendicular to the field lines, pressure 
gradients exactly balance the gravitational forces along 
a field line. The meaning of equation (9) is as follows. 
If a magnetic vector potential A*(x, y) [and therefore a 
magnetic field B'(x,y)\ is given, and if matter is 

* to$)S *v*S = o 

loflfa't 

Fio. 1.—The dependence of the function q on A in the 
stratified initiil slate (<• — I) and in a typical final slate (that 
of fit. 2c). Both q and A are normalized to their values on the 
x-axis in the initial state. 
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to find a final equilibrium state for this system we must 
solve equation (10); and for this task we need to 
calculate q(A). Parker (1968a) assumed that q(A) is 
either a linear or a quadratic function of A, and he 
solved the resulting linear equation (10) for the case 
in which the gravitational potential </> is proportional 
to the vertical distance v. We find below that, for the 
plane-parallel initial state proposed by Parker (1966), 
the function q varies as an inverse power of A (see eq. 
[ 15]). In the final states as well, q varies as some inverse 
power of A (see fig. 1). Although a is a function of A 
alone at hydrostatic equilibrium, it is not a constant of 
the motion. Consequently, we are not permitted to 
calculate (or to specify) q{A) in some initial state and 
then proceed to determine a final state characterized 
by the same q(A). 

b) Calculation of the Function u(.4) 

In general, q(A) can be calculated as follows. With 
X m V ? , the mass (&m) in a flux tube between field 
lines characterized by A and A + hA is, by definition, 

f + X *y(x,j4 + d4) 

Sm(A) = dx\ dy(x, A)p[x,)ix, A)] . ( I I ) 

It is natural to consider v and A as the independent 
variables. Since the integration over v in equal ion (11) 
is performed keeping .r fixed, we may write dy = 
dA{Syli)A) and effect the change of variables from y 
to A. We eliminate p in favor of A by using equations 
(8) and (3), and we expand the integrand of the 
resulting equation in a Taylor series about A keeping 
only first-order terms. (The neglect of higher-order 
terms is justified a posteriori.) We then solve for q(A) 
to obtain 

. . . C2dmlCx. i!v{.\.A) I fix, A)] . . . . 

The quantity y{x. A) refers to the j'-coordinats of the 
field line A at Jr.1 

If dm\dA is given, q(A) follows from equation (12) 
for any proposed configuration. In particular, both q 
for the initial and q for the filial states can be calculated 
using the same dmjdA, since conservation of both mass 
and flux implies that dm .7.1 is a constant of the motion. 

Note that q(A) depends on the shape of the field 
lines, which are originally unknown. Hence, in general, 
one must solve equations (10) and (12) simultaneously 
for any given dmjdA. The initial stale of the gas and 
field system is not known in reality, for it depends on 
the mechanism which creates the magnetic flux. Here 
we take it to be the plane-parallel system proposed by 
Parker (1966). This defines dmjdA for the final state as 
well. We emphasize, however, that the only informa­
tion needed in order to determine a final state is the 
mass-to-flux ratio in each flux tube. If the distribution 

1 In Appendix A we generalize the definition of q (eq. (fill 
to apply to any equation of slate. P - P(p>. Wc also derive 
equations, which are generali/ations of equations (10) and (12). 

of mass among the various flux tubes is obtained from 
observations, we can determine a final equilibrium 
state without reference to any particular initial state. 

III. THE INITIAL STATE: BOUNDARY CONDITIONS 

As an initial state we consider I he stratified equi­
librium slate of the interstellar gas and magnetic field 
in a gravitational field g - -e,g(vl where j-(il -
-.?(-.!') - a positive constant. Following Parker 
(1966), we assume that the ratio of the magnetic to gas 
pressures, 

asB2i-nP. <M I 
is constant in the initial state. For this stale we find 

/<,(>') = - 2HB,(0) exp ( - v 2H), (14) 
q\At) - />,(0)C 2[-2//tf,((l| l,|-'- (IS) 

and 
dm _ 2A>,(0) I A _ \ 
dA «,(0, [ III«,(()) | ' ' ' 

where X = A, 2 and H is the combined scale height of 
the gas and field given by 

» = (l +«)C-.ir- (17) 

The quantities 8,(0) and p.lO) are, respectively, the 
values of B, and p, at y - 0. The subscript i signifies 
the initial slate. In equation (16) I is not subscripted 
because, as explained in $ UK dm dA is the same 
function of A in the initial and final stales. 

The boundary conditions are as follows. Since the 
.v-axis is taken to coincide with the galactic plane and 
the sysiem is assumed periodic in v. there is reflec­
tion symmetry about both the x- and r-axes. The 
former symmetry implies that the field line original!) 
coinciding with the \-a\is remains undefurined. i.e., 

A{\. v = 0) - -IHhld) --- constant . (IX) 

Periodicity in i is expressed by 

^ 4 , 0 . ,19, 

Boundedness at infinity and conservation of the total 
magnetic flux imply 

<•<( v, >) - 0 , y + i- ; 

= - 4 « B , ( 0 ) . y = •••!. . (20) 
Because of the symmetries, equation (10) may he 
solved in the rectangle 0 < v < X, 0 < y < /.. In 
fact, this semi-infinite rectangle may be replaced by a 
finite one without affecting the solution very much. 
provided only that the extent of the finite rectangle in 
the .indirection is much larger than H (see $ Vl</,. So. 
we set the upper boundary at y - Y» II and we 
replace equation (20) by 

A(x, Y) = A,(Y), (21, 

file:///-a/is
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where A<{ Y) is the initial value of A at y = Y, If one 
recalls that the perturbations which Parker (1966, 
Appendix III) showed to be unstable always leave some 
field lines of the initial state undeformed, equation (21) 
is equivalent to taking the upper boundary at the 
position of the first undeformed field line of the initial 
state. 

Before solving equations (10) and (12), we wrote 
them in a dimensionless form (see Appendix CI). 
Thus, a of the initial state is the only free parameter 
in the equations (see eq. [CI], Appendix C). 

IV. ENERGY CONSIDERATIONS 

a) An Energy Principle 
In Appendix B we show that the magnetohydro-

dynamic equations possess an "energy integral," and 
we identify an effective potential energy W of the 
isothermal gas-field-gravity system which is given by 

W = W„ + Wm + W,. (22) 
where 

Wp=\p\nPdV, (23) 

W„ = C (B*l**)dV and W, = j rfdV. (24), (25) 

One can show directly lhat the force equation (I) 
follows from the requirement that the first variation 
of W vanish under an arbitrary displacement \ of the 
plasma elements, provided that (i) mass is conserved; 
(ii) flux is conserved; (iii) the temperature is constant. 
In ihe case of a system periodic in one direction (.r), 
one needs the additional assumption that (iv) no mass 
is transferred from one period to the next during the 
infinitesimal plasma displacements. This demonstra­
tion rigorously qualifies W as a potential energy and 
allows one to study the stability of an equilibrium state 
by investigating the sign of the potential energy 
associated with small deviations from the assumed 
equilibrium. 

b) The Meaning of Wr 

In equation (22), the magnetic energy Wm and the 
gravitational energy W„ are given by familiar expres­
sions. Note, however, that the quantity P\nP has 
replaced the usual term P'(y - I). The meaning of 
PlnP becomes transparent, if we examine the first 
law of thermodynamics (for an ideal gas in the absence 
of any fields). This is 

dQ = du + Pd(p-1). (26) 

The quantities Q and u are, respectively, the heat 
supplied to the gas and the internal energy of the gas; 
both Q and u are measured in units of energy per unit 
mass. For an isothermal process, du vanishes and dQ 
is an exact differential. 

Letting 8 denote the heat per unit volume supplied to 
the gas (i.e., 8 - pQ), we may write equation (26) as 

rftf = {SIP- l)dP. (27) 

A straightforward integration yelds tf as a function 
of P; this is further integrated over volume to obtain 

0 s j" 8dV 

= - 1 P In PdV + h | PdV 

= _!»•„ + A | PdV, (28) 

where b is a constant of integration. The second term 
on the right-hand side of equation (28) is the same for 
all states, because the total mass is fixed and the gas is 
isothermal. Therefore, the heal (AW) supplied in the 
gas in going from one state to another is simply given 
by 

AW = -All , , . (29) 
Since AH' was derived from the second term on the 
right-hand side of equation (26). it represents the work 
done by the gas against pressure forces in making a 
transition between two states along an isothermal 
path. If AW, •» 0, heat is released by the gas. Note, 
also, that for a reversible isothermal process, the change 
in the entropy (denoted by A.S") is given by 

AS = A(-)/7= - A W P 7 \ (30) 
Hence, Wp provides a measure of the entropy and ii is 
equal to the Helmhollz free energy of the gas, to 
within an additive constant. 

f) Expected Energy Change* 
When Parker's instability develops, compression 

occurs in some parts of the system and expansion in 
others. Consequently, one cannoi anticipale what ihe 
net changes in U'„ and Wp will he when a final state is 
reached. Compression (expansion) tends to increase 
(decrease) Wm and Wp. This is obvious in Ihe case of 
H'„. It is so for H, as well, because when gas is being 
compressed it tends to heat up: tor the temperature 
to remain constant (an assumption in our model), 
heat has to be released. Typical cooling times are of 
the order of 10s years in the interstellar medium and 
become shorter as the gas density increases (Spiizer 
1968). Since this time is smaller than the c-folding time 
of the instability (I0 7 years), the gas has enough time 
to cool down. 

The gravitational energy (W„) is expected to decrease, 
since gas drains down the perturbed field lines under 
the action of the galactic gravitational field. The 
"fact" that the expanding field lifts some matter to 
higher altitudes is not expected to produce a net 
increase in the gravitational energy, for field lines can 
expand only because gas is being "unloaded" from 
their raised portions. 

V. METHOD OF SOLUTION AND PHYSICAL STAII IHTY 

a) The Physics behind the Method of Solution 
To obtain a simultaneous solution of the equilibrium 

equations (10) and (12) we developed and followed the 
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procedure outlined in Appendix C. The physics behind 
that iterative procedure is as follows, (i) Guess a set of 
field lines (and, therefore, a magnetic field), which 
satisfy the periodicity and symmetry conditions dis­
cussed in § III. (ii) Distribute the total mass among 
the various flux tubes in such a way that the mass-to-
flux ratio in each flux tube is equal to the mass-lo-flux 
ratio in the corresponding flux tube of the initial 
state, (iii) Allow mass to slide up or down along lield 
lines (without transferring any mass from one tube to 
another) until pressure gradients and gravitational 
forces are in exact balance along field lines, (iv) From 
the magnetic lield obtained in step (i) and the mass 
distribution achieved in step (iv), calculate the current 
density necessary to balance all forces in a direction 
perpendicular to the field lines, (v) Check whether the 
just calculated current density is consistent with the 
magnetic field of step (i); if it is not, use this current 
density to calculate a new ("better") magnetic lield 
and go to step (ii) to repeat t he process until consistency 
is achieved. The introduction of an underrelaxation 
parameter in the iterative scheme provides a measure 
of how much " better" (or" worse "!) the magnetic field 
of one iteration is, compared with that of the previous 
iteration. 

b) Stability 

The stratified initial stale is unstable only if the 
horizontal and vertical wavelengths of the applied 
perturbation simultaneously exceed some critical values 
iscc Parker 1966), namely. 

A, > A.v = 4irM(2« + 1) " 2 . a * 0 . (31) 

and 

A„> A„(A..) = A,(l - f ) - " . (.12) 

The quantities a and / / are defined by equations (1.1) 
and (17), respectively, and it = \ x Av < 1. Parker's 
dispersion relation implies that, for a fixed Av > A„ 
the growth rate of the perturbation increases as A„ 
(> V,) increases. In addition, for a fixed Av > A,, the 
growth rate first increases and then decreases as A* 
increases. The maximum growth rate is reached when 
A, £ 2A, and A„ = oc. For typical parameters of the 
interstellar medium, the inverse of the maximum 
growth rate is approximately 107 years. This is smaller 
than the time required for one galactic rotation 
(approximately 10" years). 

Starting from the stratified initial state, we applied a 
perturbation (in the form of a deformation of the field 
lines) characterized by a stable pair of wavelengths 
(Aj,, Au). Our iterative scheme always converged to the 
initial state, no matter how large the amplitude of the 
perturbation was and regardless of the particular 
values of AA and A„, as long as they were stable. On the 
other hand, our iterative scheme never converged to 
the initial state in the case that the perturbation was 
characterized by an unstable pair of wavelengths, even 
if the amplitude of the perturbation was as small as 
I percent. This is an indication (although not a proof) 

that the iterative scheme cannot converge to solutions 
representing physically unstable stair*. 

For a fixed unstable pair of wavelengths, we ob­
tained convergence to one and the same solution 
(distinct from the initial state) for a wide range of 
amplitudes of the initial perturbation. When perturba­
tions were applied to this solution, the iterative scheme 
always converged hack to it. This, in conjunction with 
the properties of the iterative scheme described in ihe 
preceding paragraph, .vujwvr.vthat our solutions repre­
sent states of the gas-field-gravity system which are 
physically stable, at least in a local sense The class of 
perturbations applied to a final slate was such that each 
wavelength of the final stale contained an integral 
number of perturbation wavelength*. This prohibils 
mass transfer from one period of ihe equilibrium siaie 
to the next. Of course, for a definitive si ate mom on ihe 
nature of an equilibrium state, one must consider all 
arbitrary perturbations. We make additional comments 
on stability in t) Vic. 

VI. FINAL STATTS 

We chose several pairs of unstable wavelengths 
(A*. A,) for ihe perturbation applied to the initial state 
(see t) III), and for each such pair we found a final 
equilibrium state. Figures 2a, 2b. and 2.- represent 
typical final states, produced by perturbations that had 
the same vertical but different horizontal wavelengths 
Ten field lines {solidcurves) and three isodeitsily con­
tours (dashed lines) arc shown. The lield lines are 
chosen so that the amount of magnetic flux contained 
between any two consecutive ones is constant. Thus, 
(he spacing between consecutive field lines is inversely 
proportional to the mean strength of the magnetic 
field in the interval. The ratio « in the initial state (the 
only free parameter in the equations) was taken equal 
to unity. 

u) Dependence on A, 
A comparison of figures 2a, 2b. and 2c reveals that, 

as the horizontal wavelength increases, so does the 
deformation of the field lines. It is the case that the 
more deformed the field lines are, the more effective 
the gravitational field is in "unloading" the gas from 
their inflated portions. Therefore, the gas density at 
the midplane of the condensation (.» = 0, y > 01 is 
expected to increase as A, increases. This is borne out 
in figure 3, which exhibits the dependence of the 
"emission measures" (EM) on .v, in these three final 
states.2 The horizontal distance x is measured from the 
center of each condensation. In the final state 
characterized by A' = 15, we note that 

EM (x = 0) ~ 3 EM (v -= 15), (33) 

EM (x = 0) = 2.2 EM,. (34) 

1 We define the emission measure of a final state at a par­
ticular x by EM(x) = f n\x. y)dy, and we normalize it lo that 
of the initial state, EM, = / pfiykty. The subscripts / and i 
denote final and initial states, respectively. 
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Flo. 2a tlffl), lUctmrr). mi 2c(right!.—Fiiul equilibrium slates of the inienlcllar gavncki lyitcnt in J e.iU>ik griviuinMUl 
fieldf » -t^riy), wheref l>> - - f ( - >t - * positive constant. Distance ismeasured in unitsof < -' «•. »lieu- < i« theIMII IKImji 
speed of sound in Ihe gas. The dimensions of t J.h graph arc equal in half a wavelength in ihc i .md i«n J <4>ck'n«ih MI IIIC 
.v-diraclion. Halflhtcritical wavelength inlhtx*diracliunuequallo 7.2fi. Field lincs(ii»//</rttri«*«)atc,.h.i<.cn soOwt the nuitnctk 
(lux between any two consecutive ones is constant. The isodenstly conlmirt {Jmkrit cun <-»t represent ihc pomis .it whkh ihctkitNi(> 
decreases to e'\ # ' * . and r ' its value on the Jr>axi*. The number un each curve :\ the i-v-tnirdinju- o! ttut ,w-*v in Hie nmiai 
state, in which • • I. 

In Ihis final stair the column density of the gas .is a 
function of .t, ,V„(.v), differs from I 'M I v) hy al most 
18 percent: in the other two final stales presented, 
E M (v) and A'„( v) differ hy only a few percent. 

A striking feature of the final states is the fact iliat. 
compared with the initial scale height, the >n;/, heivht 
oflht gas increase* al the position of the maaaetu hilJ 
"valleys" ami tin reuses at the"wing\" of the eomlen-
sations, where the field lines hare expanded At the 
midplane of the condensations, moreover while the 
gas density increases with increasing .\,. the scale 
height of the gas increases as well (compare the lowest 
isodensity contours of figs. 2a. 2h. and 2c I. litis implies 
that the gas density increases not so much because of 
compression in the vertical direction, hut because of a 
very efficient drainage of the gas from ihe tnllaictl licld 
lines. The additional fact that in the "wings" the gas 
density and the scale height decrease as .», increases 
precludes the explanation thai gas observed at high 
altitudes in the Galaxy is gas thai has been lifted by 
Ihe expanded field lines. In fact, if the magnetograv-
itational instability is to be invoked to explain the 
high-altitude gas, one should concentrate on the iden­
tification of thai gas with the rise of ihe isodensity con-
lours at the position of magnetic Held "valleys" (see 
fig. 2). 

The ratio of the magnetic to gas pressures, an 

F I G . 3.—The emission measure (normalised to its value in 
the stratified initial state) at a function of x in the three final 
slates of figure 2. The unit of length is C'lg. The number (X) 
labeling each curve is equal to half of the horizontal wavelength 
of the corresponding final stale. The curves X » "and X •= 12 
could also represent the normalized column density in the 
corresponding final states to within a few percent. Similarly, 
the curve X =• 15 could represent ihe corresponding column 
density to within 187.. 
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TABLE i 
*s» mi ( i * t tkvtits- is Timtt f w * i StfcTiLf* 

.AS 

»t Scmt INnvn 

u.r) 
• U , / J rf*.r> — u.r) a » r <l • — r 

10.0) 
CO. 2J> 

(JT. 221.. 

1.2 
0 1 
0 1 
l.fc « 10' 

1.4 2.0 
«0? 0 M 
0 7 0 6 
7 1 » 10' 1.0 . 10" 

1.0 
I I . 10•* 
1.0 
1.1 •» 10 * 

1.0 
2 t • 10-* 
10 
1 • « 10- ' 

10 
4.2 
10 
4 1 

• i n - ' 

- lo-« 
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* Tk* »;otumm fvrafed a, A. and r refer 10 the AIM) Malt* uf fifurct 2*. 26, and 2r. 
t Racall ihal Jl 1 : 1 , .') n AlfcrcM in «ach >uit. 11 increases a< «< «o from slate a lo stuta r. 

interesting quantity in itielf. constitute! another indi­
cator of the clttcwncy with which gas drains down ihr 
inflated lick) hoes, and o f the dependence of thit 
efficiency on A,. Table I cshibitt the value* of «<«. 11 
tscccq. |tJ|»inihel»na'. state* o f figures 2a, 26. and 2> 
1 henceforth referred to at unlet a. ft, and r\ at mint 
liry points ( 1 . 1 ) The f a t density it alio shown at the 
same points; it is normalized to lis initial value 011 the 
v-axit. In addition to the information supplied in 
l.iWc I . we remark Ihal both the f a t dentils and the 
magnetic held arc monotonicaliy decreasing functions 
of i' .11 a lined * . A l the tsso values of > used in ta We I. 
the normalized density in the initial Mate is^tO) « 1.0 
and ».,l22> •- 1.8 n 10 '. The final dentil) along Ihc 
s-axi* is always uniform (and equal lo unity 10 within 
a few percent) because of the requirement thai there he 
reflection symmetry about the ,«-axis (set eq. |IK)). No 
pressure gradient* can he sustained along the »-axis, 
because 1 he .v-componciit of the gravitational licit! is 
astumeil to vanish, and because magnetic forces do 
not act along field lines. 

The fact that al .v - 0 alpha </<vreases monotonically 
as r increases, and the fact that al v = .V alpha in­
creases monotonically with .1. arcdifferent expressions 
of ihe same conclusion slated above, namely: ilie 
imrea ««• oflhe gas density in the magneticfield" rallcy\" 
h due primarily 10 efficient drainage along field lints, 
rather than 10 compression perpendicular to the galactic 
plane. This drainage it more ellicienl the larger A, is. 
In addition, the computed low densities al v = V and 
large i's. in conjunction with the large values of a in 
the same region, indicate thai (he magnetic field is 
nearly a vacuum field at Ihe raised portions of the 
upper licld lines. 

The absolute "horizontal w id th" of (he condensa­
tion (denoted by D and defined as the distance from 
the comer of ihe condensation 10 the point x, al which 
the normalized emission measure becomes equal 10 
unity) shows an increase with increasing A, Isee Hg. 3). 
However, the ratio D J , decreases as A, increases; il 
is equal to 0.47 in state a and drops to 0.38 in slate r. 
Wc should bear in mind ihal the above definition of D 
uses as a reference Ihc stratified initial slate, which, as 
emphasized in § lift, is needed only to provide a mass-
10-flux ralio in each flux tube of the system. In external 
galaxies seen face-on. one can observe the contrast 
between regions of high ami low gas density. Thus, the 
relevant quantity is the ralio I 'M <\ - 0) E M < i = X) 

for each of the states of fig ure J. This contrast becomes 
more pronounced at A, increases. 

ft) Energy Change* 

In making a trantmon from an initial 10 a corre­
sponding final state, the system alters its magnetic and 
gravitational energies In addition, while remaining 
isothermal, the gas does work (positive or negative) 
against pressure forces, thus releasing or absorbing 
heat (see eq. (24]). The net reduction of each of ihe 
three forms of energy is shown in table 2 in ihc case 
of the final slates a. ft, and c. In each state all numbers 
are normalized to the imernal energy ( of the gas 
which is given by 

V • \PdV. <XS, 

The quantity C is constant because of the isothermal 
equation of stale and because of conservation of total 
mass. 

Starting with the heat term, wc note that more heal 
is given off as A, increases. Since heal is released bv 
compressed gas and absorbed by expanded gas. the 
amount o f heat released may be taken as a rough 
measure of the net compression suffered b> the gas 
Thus, the entries in the second column of table 2 
confirm ihal the larger A, is. the more efficiently the 
gas is compressed. 

In spite of the large expansion suffered by field lines 
in the "wings" of each condensation, the reduction in 
magnetic energy is small compared with thai of the-
other energy terms. The relatively weak compression 
of Ihe magnetic field [that lakes place primarily .-ilonj; 

TABLE 2 
ENIKGV RIUI'CTION FOR Tnaii FI\»I Sr»rts 

fNEIK.S Kllf.ASfcU* 

FlNAl STATt 
Heat 

(«I0») 
Magnet a.-
(» 10*1 

Oravjtaifnnjl 
(> 10') 

a . . 2 '2 0.00 1.17 
» 5.7' 0.10 5.50 
c I I S 2 1.7 12.1 

* In each stale, the energy released has been norma It/cd M 
(he internal energy ul" il*e gas, 13,2) J /W J 
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the midpianc (r « 0. y • 0)] almost cancels the effect 
of the large expansion in the "wings." This is not 
surprising, since the field lines that suffer the greatest 
expansion are those at intermediate and high altitudes. 
where the magnetic energy content is small in the first 
place. The increase in the amount of magnetic energy 
released at larger A, may be due to the availability of a 
larger volume, in which field lines can expand. 

The gravitational energy behaves as anticipated in 
$ IVr. It is interesting to note that th; heat released 
keeps pace with the decrease in gravitational energy, 
since both quantities reflect the accumulation of gas 
in magnetic field "valleys." 

c) Which Is The Final Slate ? 
Over horizontal distances that are larger than twice 

the critical wavelength A,, given by equation (31), the 
possibility of two "final" states (one having a wave­
length equal to twice that of the other) arises. Merely 
on energy considerations, the slate with the longer 
wavelength is a more likely final slate, since it is lower 
in total energy. We chose Y » 25 and X - 18, and we 
applied a perturbation to the stratified initial state thai 
had a wavelength X, - X irnlher than the usual A, = 
2A').1 Furthermore, we imposed no condition whatso­
ever at.v = XI2. The final stale obtained in this manner 
exhibited the characteristic double "hump." as ex­
pected. Its field lines differed from those of figure 2a 
by less than three parts in 1000 at all points. When 
perturbations were applied to this stale, the iterative 
scheme converged back to it. Only when the amplitude 
of the "perturbation" was so large that it erased the 
double "hump" did the iterative scheme pick out the 
state that has twice as large a horizontal wavelength. 
This leads us to believe that both states represent local 
potential wells and thai it takes a finite amount of 
energy to push the system out of the state with the 
shorter wavelength and down the potential hill into 
the lower energy state, characterized by the longer 
wavelength. If perturbations that can provide the neces­
sary energy are available, the interstellar gas conden­
sations discussed so far may tend to coalesce into 
larger (and denser) condensations, separated by a larger 
mean distance. 

Suppose, now, that a disturbance in the initial state 
consists of a superposition of many wavelengths. 
Under these conditions, which final state will be 
reached? A perturbation with initial growth rate n 
grows in time as exp (nf). Because of the exponential 
dependence on n, the amplitudes of two perturbations, 
which differ in their growth rates by a small amount, 
will be very different after some time has elapsed. So, 
given a spectrum of wavelengths for the initial pertur­
bation, that final state is more likely to be reached 
that has a wavelength corresponding to the maximum 
growth rate. In all cases presented, we have fixed 
Y = 25. Since we also took a = 1, this implies that 

1 Whenever numbers are given, the unit of kr.gth is C'lg, 
where C is the isothermal speed of sound in the gas and g is 
the magnitude of the vertical gravitational field of the Galaxy 
(assumed to be a constant; see 8 HI). 

the maximum growth rate occurs at approximately 
X = 12.4. The solution of figure 2/> is close to ihis final 
state. 

In summary, then, the factors deciding which final 
state will be reached are as follows. |i) If the initial 
perturbation is monochromatic, its wavelength alone 
determines the final state, (ii) If a spectrum of wave­
lengths is initialf) available, that final sute will be 
reached which corresponds in lhe wavelength of 
maximum relative growth rale on) If disturbances 
continue to be present during the transition of the 
system, the amplitudes of these disturbances may also 
play a role in determining the- final slate. A definitive 
statement must await exact calculations. 

il) Dependence on A„ 
Unlike the horizontal wavelength, the vertical wave­

length does not affect a solution very much, provided 
only that A„ » //. for a fixed (unstable) A, we found 
that, by changing Av by almost a factor of 2, a typical 
solution changed by much less than I percent at small 
v's, and by a few percent at intermediate i s . One could 
anticipate this insensitive dependence of a solution on 
Av. since more than 90 percent of the energy (per unit 
length along JC) of the initial state resides under the 
altitude y =. 7, and more than 5(1 percent of the energy 
is under y ~ 2.5. We further observed that the shape 
of the field lines at very large i s depends on A,, if 
A„ - A„ ( » / / ) . ' In the case that A, •> A, ~ W, this 
effect becomes negligible altogether. 

VII. CONCLUDING RtMARKS AND 
COMPARISON WITH OBStRVAl IONS 

We have determined final equilibrium states for a 
model of the interstellar gas and field in the galactic 
gravitational field. Our solutions represent lar\ic-\cale 
isothermal condensations of the interstellar gas in 
magnetic-field "valleys." They should mil he identified 
with "standard clouds," which could be produced by 
the magnetogravitational instability only if « -> I 
(corresponding to a cold gas and a critical wavelength 
of the instability which is only a fraction of the scale 
height). We find that the boundaries of the large-scale 
isothermal condensations are fairly diffuse. This is to 
be expected, since we have not allowed any "phase 
transitions" to occur in the mam.er described by 
Field, Goldsmith, and Habing (l%9). The thermal 
instability (Field 1965), which we have not considered 
here, could produce only small-scale (less than 1 pc) 
structure within the large-scale condensations, which 
the magnetogravitational instability initiates. 

A distinctive feature of the final states is that con­
densation occurs not so much because of compression 
in the direction of g, as because of drainage of I lie gas 
along field lines, especially at intermediate and high 
altitudes. As a consequence, at the midplane of the 
condensation, the scale height of the gas in a final 

4 Although this is insignificant for ihe problem at hand 
because of the energy argument just cited, the shape of lield 
lines at high altitudes may be important in the context of 
cosmic-ray propagation. 
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stale is larger (by a factor of - ?) than the scale-height 
in the corresponding stratified initial stale; at ihe 
" wings" of the condensation the opposite is true. Thus, 
the observed gas at high galactic altitudes cannot be 
interpreted as gas lifted by expanding field lines, If at 
all, it should be idcntilied with the rise of the isodensity 
contours in magnetic field "valleys." As a corollary, it 
is unlikely that any substantial material galacli; halo 
can form by inflated field lines. A radio halo could 
indeed form, however, by cosmic rays and expanding 
field lines in the manner described by Parker (1968*). 

To compare with observations one needs lo know 
the characteristic wavclengih of a typical final state. 
A lower limit to this wavelength is, of course, the 
critical wavelength for the instability, A, (see eq. [31 (). 
Care should be taken, however, not to identify H. in 
the expression for A,, with the observed scale height 
of the gas today. The observed scale height is repre­
sentative of the final stale, rather than the initial one, 
since the growth-lime of the instability is only 10' 
years. Realizing thai « is a point function and that il 
cannot therefore be obtained by averaging either B or 
P over large distances, in order to make a semi­
quantitative comparison with observations we assume 
that a ~ 1. Then, since the observed scale height is of 
the order of 10 s pc, we expect gas condcnsai ions pro­
duced by Parker's instability to be separated by at least 
a few (3 or 4) hundred parsecs. U nless a is unexpectedly 
large, gas condensations separated by smaller distances 
than this cannot be attributed to this instability. Be­
cause Parker's instability is associated with very long 
wavelengths, final condensations involving up to 
106 Me could be produced. (Note that a gas element 
travels only a fraction of the horizontal wavelength in 
going from an initial to a final state.) Also, because of 
the large scales that could be involved (up to a few 
kiloparsecs), we view this instability as providing the 
stage on which small-scale processes in the interstellar 
medium (e.g., dark cloud formation and cloud col­
lapse, star formation and supernova explosions etc.) 
act out their individual roles. 

Both the nicely displayed, recent 21-cm observations 
by Heiles and Jenkins (1973), as well as the compilat ion 
of 21-cm observations by Fejes and Wesselius (1973), 
when combined with the starlight polarization meas­
urements by Mathewson and Ford (1970), reveal an 
intimate association between the interstellar gas and 
the interstellar magnetic field. In fact, enormous gas 
condensations coincide with magnetic-field "valleys." 
At the position of the field "valleys" the gas extends 
high above the plane and it does so in directions 
parallel to the magnetic field. The most prominent 
condensation is centered at about / = 40°; it is a few 
tens of degrees wide and extends above (and below) 
the plane by at least as much as 60°. Field lines emanat­
ing from this condensation form arches above the 
Sun's location and return to the plane in the general 
direction / = 250°, where another condensation is 
located. The "edge" of the condensation at / = 40° 
may be as close as 100 pc, and that at / = 250° as close 
as 200 pc. However, the starlight-polarization maps of 
Mathewson and Ford show that most of the contribu­

tion lt> polarization comes from the distance range 100 
400 pc in each of these directions Moreover, contri­
bution lo polarization is also made by gas cMi-iidine 
out to about 601) pc in each direction. Therefore, the 
separation between the "centers" of the two conden­
sations may he as large as MlOnc. Nut only is ilns 
separation wilhin I he range of unstable wavelengths 
for Ihe magnciogravitutiomil insiahility, but it m.i\ 
also be close lo the wavelength corresponding to the 
maximum growth rate. 

Below the galactic plane, two prominent eondensj-
lions that are centered ai / > 40 and / ^ I'll . 
respectively, arc similar in size and in separation in 
the ones just discussed. They arc located in magnetic 
field "valleys" and they arc joined b> field lines that 
arch high below the plane. They loo may constitute 
evidence that the magnctogravitutional insuibilitv has 
occurred in the solar neighborhood. 

If the Jeans instability were responsible for the 
formation of these condensations, then (i) they would 
be more centrally condensed, and (ii) the long dimen­
sion of each condensation would certainly not be along 
the magnetic field. When self-gravitation becomes 
important, three-dimensional calculations (that incor­
porate the assumption of flux-freezing rigorously) 
show that the equilibrium stales exhibit flattening along 
the magnetic field (Mouschovias 1974). 

The observed symmetry of high- and low-density 
regions about the galactic plane is understood in the 
context of the magnetogravitational instability. What­
ever the mechanism that triggers the instability (spiral 
density shock waves?), it certainly must act coherently 
over a region larger than the critical wavelength for 
the onset of the instability (several hundred parsecs). 
Since the interstellar gas forms a thin disk having 
thickness of a few hundred parsecs today, the perturba­
tion that triggers the instability car influence the gas 
above and below the galactic plane in a similar manner. 
Therefore, if the initial distribution of the gas was 
symmetric about the plane, the final state is expected 
to retain this symmetry. Smaller-scale deviations from 
this symmetry may be attributed to local phenomena 
(e.g., depletion of gas by star formation, ionization by 
nearby stars, sweeping of gas by supernova shocks, 
etc.). 

Observations of the motion of the interstellar gas in 
the solar neighborhood show a flow pattern in which 
gas falls down toward the galactic plane and flows out 
in the general direction of the galactic center and that 
of the anticenter (Erickson, Heifer, and Tatel 1959; 
Heifer 1959; Weaver 1973). The velocities observed 
are a few kilometers per second. This particular flow 
pattern is consistent with a picture in which gas is still 
sliding down the expanding field lines joining the two 
condensations referred to above, which are located at 
/ =: 40° and / SL 250°. 

Observations of external galaxies provide further 
evidence for the magnetogravitational instability. This 
(and some consequences of the assumption that the 
instability is triggered by a spiral density shock wave) 
will be discussed in another publication (Mouschovias, 
Shu, and Woodward 1974). 
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APPENDIX A 
GENERALIZATION OF THE FUNCTION </ TO EQUATIONS OF STAN- /• >pi 

Even if the isothermal equation of state is replaced 
by a general equation of stale 

P(P). (AD 

a connection between initial and final slates may Mill 
be made. For this purpose we define ?(.»•. .»•) by 

cup ( / * • • ) 
(A2) 

Following the same procedure thai we did in (ill, 
we can still show that 

q = qiA) (A.I) 

and that equations (10) and (12) now become, 
respectively. 

V'A Avp d\nq{A) 
dA 

and 

. . . \dmlC* . PyU.A)\dq 
q ( A ) = 2TAl)0

dx-TA-\rp •9(A) 

(A4) 

• (A5) 

Inequation! \ J l /> is eliminated by usingcquationi ATi. 
i.e.. 

<AA I ' 
I' ./(") dq 

dP <rH) //• (A(') 

In practice, the derivatives appearing in the nelii-li.uul 
sides of equations (A5| and (AM arc calcul.iied m .i 
straightforward fashion by usine ihc chain rule We 
obtain 

dP 
dqilA 
dA dP 

£(i4'j; «.•-.•'-! ) { f | ' ( A 7 ) 

dA 11 v i p . i • /) l\ d,i t 
and 

d± 
dP dP \ixtp iyip1\dpi 

The price that we have paid, in order to replace the 
isothermal equation of slate with the general equation 
of slate (Al). is that the iterative procedure over the 
single function A must no.v he replaced hv an iterative 
procedure over all three functions .(. </. and p. The 
solution of this general problem is feasible. 

APPENDIX B 
AN "ENERGY INTEGRAL" FOR AN ISOTHERMAL PLASMA 

Bernstein el al. (1958) state that the equations of 
magne* 'hydrodynamics 

(Bl) dt 
dt - -vp - pity + i 

c 
X « 

dp , i 
it V-i.pt) = 0 , 

E + (e,( ) X B = 0 , 

£<*-*>-° . 
VXE 'c'i't ' 

VXB = (4T7,'CV, 

VB = 0 , 

(B2) 

(B3) 

(B4) 

(B5) 

(B6) 
(B7) 

possess the energy integral 
f t Bl P \ 
I dyllpv2 + jj- + pi* + 1 - a constant, (B8) 

where the integration is extended over all space. The 
operators c < t and djdt denote I ulerian and comoving 
time-derivatives, respectively. 

Here we show that, even in the case that the plasma 
is isothermal (i.e.. y ~ I), an "energy integral" still 
exists; it is identical with that of equation (B8), except 
for the fact that the term P{y - I) is replaced by 
P In P. We proceed in the usual manner lo lake the dot 
product of both sides of equation (Bl) with v: then, 
by using equations (B2HB7), we write each term as 
follows: 

•**"-*•(£*»')-£(£)• <B9) 

file:///dmlC*
file:///ixtp
http://V-i.pt
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,.r-V0 « -V.(p^r) - - l ^ . ) . (BIO) 

Also, 
- • • W - -V-(/>i.) + !•»•». (BID 

Bui. by judiciously adding and subtracting the quan-
m> P\nPV-r, we can show thai the last term in 
equation (Bl I) may he wnticn as 

PV-r = -\^(P\nP) + V-(P\nPr) <BI2) 

Collecting all terms, we obtain 

L ^ + fn + t 4 + Pinp) 

+ V-Upi** + J J £ K * + fh + /Mn(P/e)»] - 0 . 

(BID 
in equation (B13), t is the natural-logarithm base. If 
the plasma exiendi over all space, being periodic in x 
(w ith a wavelength K) and symmetric about the x-axii, 
we may integrate equation (Bl 3) over one period of the 
system in x, and over the upper hair-plane in >•.* The 

'• As in the main text, the geometry is taken to be two-dimen­
sional, although this it not necessary for this argument. 

divergence term yields a surface integral with all the 
terms vanishing, if (here is no mass transfer from one 
period to the next, or across the <-axis, and if either 
the magnetic field or the velocity vanishes at y = <x>. 
Formally these conditions are 

A-t 
ax. y <-- «) 

= 0 at J 
l(.r = • X. v) 

(BI4) 

and either 

m,x,y = oo) --- 0 , or H.x.y = x ) =. (>. <BIS> 

The unit normal to the "surfacv " of a period is denoted 
by <, and X is equal to A,/;. Thus, the result of the 
integration is 

jdV^pv' + ~ + f^ + Plnp\ •• aconstanl. (BI6) 

The first term in this integral is the kinetic energy of 
the fluid. The turn of the other three terms acts as an 
effective potential energy of the isothermal plasma. 
This point and the meaning of Pin P are discussed in 
the main text (see § IV). Here we only remark that 
P\nP is not the internal energy densil) of the fluid: 
the latter is always equal (o 3P'2. 

APPENDIX C 

METHOD OF SOLUTION 

1. THE DIMENSIONLESS PROBLEM 

We measure the magnetic vector potential and the 
gas density in units of their initial values on the .v-axis, 
i.e., 2HB,(0) and p,(0), respectively. The unit of 
length is taken as C'lg, and the unit of time is fixed 
by choosing the unit of velocity as C, (he isothermal 
speed of sound in the gas. With the gravitational field 
chosen as in § III, we may write the dimensionless form 
of equation (10) as 

V»-4(x,y)= Q(y,A;<x), (CI) 

wiiere 

Qly,A;«) = I dq(A) 
8«(I + «) 3 dA exp (->•). (C'2) 

The parameter a is characteristic of the initial state (see 
eq. [13]). Similarly, equation (12) becomes 

HA) - } j g / f * * ^ exp [-,(*, A)]. (C3) 

where 
dm 
dA ' -4ja i + <t)A, (C4) 

and X is defined by X s \xj2. The dimensionless form 
of the boundary conditions is 

A(x,y = 0) = 1, 
CA(x.y)\ 

f'.t |*.o.tx 
'- 0 . 

(C5) 

(C6( 

and 
^(.r,.i) = 0, y = +oc ; 

= 2, >•= - x , (C7) 
The approximate boundary condition that replaces 
equation (C7) is 

A(x, Y) = A,( Y), (C8) 

with A,( v) given by 
A,(y) = exp l-ylQo: + 2)J. (C9) 

II. OUTLINE OF THE NUMERICAL SCHEME 

In equation (CI) V" is a linear differential operator 
and Q is a nonlinear algebraic operator. We solved 
equation (CI) numerically by an underrelaxation 
iterative procedure. The premise was that, if we can 
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calculate Q as a function of x and y (rather than A 
and r). we could easily solve the resulting Poisson 
equatum by any one of the many available fast tech­
niques (sec Dorr 1470). Wc know Q as a I'unction of 
i audi , however, only if a solution Ay x, v) is at hand; 
hence the necessity of an iterative schi'me 

Starting from an initial guess. A "'(.v, v). we define a 
sequence of iterates by the recursion relations 

^ . " • " =. Qty.A" ; » l . 0.1 . (CIO) 

A'" #".-(•" (I - 0 " ' M . " " " . 

0 s > " < I . (CI I) 
The quantity A,"' " is a provisional iterate and 0"" 
is the relaxation parameter at the mh iteration. We say 
that a solution is reached if the following condition is 
satisfied at all points ( i . i ): 

<CI2) 

In equation (CI2), absolute values are denoted by the 
vertical bars. (Recall that the dimensionless A is always 
positive.) The quantity c is a small positive number 
and can be chosen at will to achieve desired levels of 
accuracy. 

We chose some field lines of the initial stale (the 
number varied from 65 to 129). we introduced pertur­
bations most often having the form 

8,4(.<r, y) = - AAy)n sin (irv/ Y) COS (vxjX), (C13) 

where n is a fixed positive number less than unity, and 
we followed these field lines from iteration to iteration 
until they settled down. Although we found solutions 
(to within I or 2%) in a number of iterations varying 
from 6 to 22, we forced the program to continue for as 
many as 97 iterations in order to make a detailed error 
analysis. Thus, we computed the asymptotic converg­
ence rate and demonstrated that, at any one interior 
point, our solutions are accurate to within 0.5 percent. 

In more detail, the steps involved in the iterative 
scherr e are the following. 

i* Define a uniform mesh over the region of interest 
having J points in the t-direction and K points in the 
.v-direction: 

y, = U- D-W, 7 - 1,2 / ; (C14) 

x„ = (* - DA* , k = \,2,...,K; (CIS) 

where Ay = Y!(J - I) and Xx = X,{K - I). [Note 
that, a mesh having been defined, all functions of one 
(two) variables become one- (two-) dimensional 
arrays.] 

ii) Choose a set of field lines of the initial state 
which we shall follow. Let this set be [A,), i •- I, 
2 /. 

iii) Guess an Am(x, .»•). 
iv) For each x, interpolate to find y\A„ x), i - 1, 

2 , . . , /. That is, obtain y as a function of x along each 
field line chosen in step (ii). 

v| I or each x. differentiate <i I. >i»i; h respect to A 
to obtain < i < I 

vi) Perform the integration in equation <(. 'I for 
each A,. 

vii) Obtain </( I.) from equation it '). since 
ilt'HA,) i/.-f is always given b> equation il -)| 

Mil) Perforin the differentiation with respect to I to 
find MA,I = •/</(•(.)./( 

ix) Since ';t I.I is known along the held lines, whoso 
position was determined in step nx>. intcipolalc to 
obtain h at the mesh points. I his interpolation is done. 
for each x. by using i|.4,. i) as old ahsiissaeand i as 
new abscissae; the subscripts i and / span ihc.r 
respective ranges. 

x) With the right-hand side known as a function of 
.v and i. the Poisson equation tC I Ms solved to !nul 
A-'W.y). 

xi) If I and ( " satisfy the criterion given b> 
equation (CI?), then -I'" is a solution If they do not. 
undcrrelax A as in equation (I ' l l ) and go hack to step 
(iv) to repeat the process. 

Numerical integrations, differentiations, and inter­
polations arc performed so many tunes in the program 
that, although the routines performing ei-.ch operation 
are very accurate, ihcir combined ellcct in the calcula­
tion of the right-hand side of equation (CI) cannot he 
predicled._To study this effect wc searched for a 
function Aix. y), which would (D correspond to held 
lines having the desired waxy shape; nil satisfy the 
appropriate boundary conditions: and mil allow us 
to calculate the right-hand sulc of equation i d ) 
analytically! If ŝ ich an A(.\. n is known, then the 
calculated Qiy.A.a) can be compared with the (J 
computed by the program and the net numerical 
errors be determined. Such an A is obtained by solving 
the quadratic 

e x p [ - / < 2 « + 2)] = (1 - AHA - .4„)i.lv) • .4 . 

(CI 6) 

where 

H'(x) = »• cos (irxlX), K| < I . (CI7) 

and A0 is the value of A in the initial state at r Y. 
It is remarkable that we foundjhat the maximum 

error in the computation of ifyt 4) i/4 occurs ul the 
upper boundary (where all physical quantities arc very 

TABLE .1 
MAXIMUM C O M K I A I I O N A I EKKORS 

Function Maximum hrror (",,) Location 

XA, x) 0 . 3 2 0 i .= :. A• - 1 
i-tij.xt/rA 0.060 / : r.s. A l< 
/U)* 0.0W , = I 
q(A) 0.445 i = 65 
litfMIJA 0.770 i = 6 4 
dq{Aix. >)| cM . . . 0.91 , j - 64, k ~ 45 

• The function HM is defined as the integral in the denom­
inator ol cq.iation (C.l). 
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small compared with their values on the .v-axis) and is 
equal to 0.91 percent. Table 3 exhibits the maximum 
errors in ihe computation of ihc various quantities and 
the points at which these errors occur. The mesh was 
uniform in each direction; the number of mesh points 
in the i-direction was 65. and that in the v-direction 
was 6.1. This is the smallest number of mesh points 
used to obtain any one o f our solutions. Thus, ihe 

Bernstein, I. B , Friemin, I. A.. Kruskal, M. D , and Kulsrud. 
R M. Mt.Proc Rov Sue. U-imiAml, AI44. 17. 

Dorr, l \ W. 1970. SIAM Kn w••, I I , No :. :4X. 
Dunfcv. I- W. |»5J. M.\.H.A.S., 111. IW) 
l-.ru-kwm. W. C , Heifer, H. L . and Taiel. I I . K. 1959. /•/,.-

.ret/rngi IAU Sympmwm v. ed. P.. N. Hraccuell (Stanford: 
YtiaiiWnu Umwisiiy rrcsM. p >w 

H-jcs. (..andWcstclius. I> R I'sl7.'l. / M , . atiJAp.24, No. I . I . 
field, (i B l%J, Ap.J. 142. S'l. 
I Kid. <• H.. Goldsmith. I> . ,md llabinn. 11. J. 1969. Ap J 

t i . r» iv>t , l» . LI49. 
I kites, v . and Jenkins, E. 1971. papers presented al l.'vthand 

I4(>ih meeting of I he AAS. and I V Svmpo. No. Ml. 
Heller. I I I.. 1959, A.J., *4, IW. 
Lerthe. I. 1967a, Ap. J.. 14». .'95. 

191,76,/(>/», p. SM. 
Mathcwsou, D. S„ and Ford. V. L 1970, \trm. HAS., 74, 

141 

errors given in table J are Ihe larpc<.t that we may 
cxpeci. The indices/and A denole mesh points in ihe 
I- and v-directions, respectivelv isee eqs. ( t" l4| ami 
[CI>)>. The index i denotes Held lines, the lowesi lieM 
line having / = I and the one at t )'having:/ ftV 
Note that the maximum errors occur at ihe boundaries 
In fact, the errors at interior points are much less than 
those given in table 3. 
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