Modeling of the repository behavior of TRISO fuel.

PDF Version Also Available for Download.

Description

This report satisfies Milestone 4295 for Work Package A0403K11. The long-term behavior of TRISO nuclear reactor fuel in a geologic repository is examined in terms of its durability and thermal impact. The TRISO fuel concept, under development at General Atomics[1] involves embedding fissile uranium and/or actinides in a carbonaceous material as shown in Fig. 1. In the concept, fuel kernels containing fissile material are surrounded with a porous carbon buffer and coated with inner and outer pyrocarbon layers separated with a SiC layer. The fuel particles are then imbedded in a graphite compact and the compacts placed in fuel channels ... continued below

Creation Information

Morris, E. E. & Bauer, T. H. January 31, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report satisfies Milestone 4295 for Work Package A0403K11. The long-term behavior of TRISO nuclear reactor fuel in a geologic repository is examined in terms of its durability and thermal impact. The TRISO fuel concept, under development at General Atomics[1] involves embedding fissile uranium and/or actinides in a carbonaceous material as shown in Fig. 1. In the concept, fuel kernels containing fissile material are surrounded with a porous carbon buffer and coated with inner and outer pyrocarbon layers separated with a SiC layer. The fuel particles are then imbedded in a graphite compact and the compacts placed in fuel channels drilled in fuel assembly blocks as shown in the lower right-hand corner of the figure. Dimensions are listed in Table 1. Available data on the degradation of the carbonaceous materials in an aqueous environment is reviewed. A model accounting for waste package failure and the resulting degradation of the waste forms is used to evaluate the potential for the long-term sequestration of radionuclides from spent TRISO fuel in the Yucca Mountain Repository. Finally, thermal analyses of decay heat assess the potential benefits in repository space utilization from recycling actinides from PWR spent fuel as very high burnup TRISO fuel. Experimental data on the aqueous dissolution of carbonaceous materials is relatively sparse and in some cases is based on measurements carried out at temperatures much higher than would be expected in the repository. In addition, the degree to which the aqueous solutions used in the measurements are representative of Yucca Mountain groundwater is uncertain. However, the available dissolution rate data are generally two or more orders of magnitude lower than the Yucca Mountain Project's dissolution model for borosilicate glass. Model calculations show that if the observed rates are applicable to the Yucca Mountain environment, directly disposed TRISO fuel has the potential to prevent significant release of radionuclides to the environment for several million years. A scheme was examined where actinide elements recovered from {approx}77 MT of spent PWR fuel were used to manufacture 1 MT of TRISO fuel for a high-burnup recycle in a Deep Burn Modular Helium Reactor (DB-MHR). PWR process waste and spent DB-MHR fuel would be disposed in the Yucca Mountain Repository. Thermal performance computations show that the space utilization benefit of this recycle scheme would potentially be in the range of 1.7 to 1.8 as compared to generating the same amount of nuclear energy only in PWRs with direct disposal of the spent fuel.

Notes

available

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ANL-AFCI-160
  • Grant Number: W-31-109-ENG-38
  • DOI: 10.2172/885503 | External Link
  • Office of Scientific & Technical Information Report Number: 885503
  • Archival Resource Key: ark:/67531/metadc873479

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 31, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Feb. 17, 2017, 1:08 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Morris, E. E. & Bauer, T. H. Modeling of the repository behavior of TRISO fuel., report, January 31, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc873479/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.