Identification of isotopically primitive interplanetary dust particles: A NanoSIMS isotopic imaging study

PDF Version Also Available for Download.

Description

We have carried out a comprehensive survey of the isotopic compositions (H, B, C, N, O, S) of a suite of interplanetary dust particles (IDPs), including both cluster and individual particles. Isotopic imaging with the NanoSIMS shows the presence of numerous discrete hotspots that are strongly enriched in {sup 15}N, including the largest {sup 15}N enrichments ({approx}1300 {per_thousand}) observed in IDPs to date. A number of the IDPs also contain larger regions with more modest enrichments in {sup 15}N, leading to average bulk N isotopic compositions that are {sup 15}N-enriched in these IDPs. Although C isotopic compositions are normal in ... continued below

Physical Description

PDF-file: 74 pages; size: 0 Kbytes

Creation Information

Floss, C; Stadermann, F J; Bradley, J P; Dai, Z R; Bajt, S; Graham, G et al. September 2, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We have carried out a comprehensive survey of the isotopic compositions (H, B, C, N, O, S) of a suite of interplanetary dust particles (IDPs), including both cluster and individual particles. Isotopic imaging with the NanoSIMS shows the presence of numerous discrete hotspots that are strongly enriched in {sup 15}N, including the largest {sup 15}N enrichments ({approx}1300 {per_thousand}) observed in IDPs to date. A number of the IDPs also contain larger regions with more modest enrichments in {sup 15}N, leading to average bulk N isotopic compositions that are {sup 15}N-enriched in these IDPs. Although C isotopic compositions are normal in most of the IDPs, two {sup 15}N-rich N-hotspots have correlated {sup 13}C anomalies. CN{sup -}/C{sup -} ratios suggest that most of the {sup 15}N-rich hotspots are associated with relatively N-poor carbonaceous matter, although specific carriers have not been determined. H isotopic distributions are similar to those of N: D anomalies are present both as distinct very D-rich hotspots and as larger regions with more modest enrichments. Nevertheless, H and N isotopic anomalies are not directly correlated, consistent with results from previous studies. Oxygen isotopic imaging shows the presence of abundant presolar silicate grains in the IDPs. The O isotopic compositions of the grains are similar to those found in presolar oxide and silicate grains from primitive meteorites. Most of the silicate grains in the IDPs have isotopic ratios consistent with meteoritic Group 1 oxide grains, indicating origins in oxygen-rich red giant and asymptotic giant branch stars, but several presolar silicates exhibit the {sup 17}O and {sup 18}O enrichments of Group 4 oxide grains, whose origin is less well understood. Based on their N isotopic compositions, the IDPs studied here can be divided into two groups. One group is characterized as being ''isotopically primitive'' and consists of those IDPs that have anomalous bulk N isotopic compositions. These particles typically also contain numerous {sup 15}N-rich N-hotspots, occasional C isotopic anomalies, and abundant presolar silicate grains. In contrast, the other ''isotopically normal'' IDPs have normal bulk N isotopic compositions and, although some contain {sup 15}N-rich hotspots, none exhibit C isotopic anomalies and none contain presolar silicate or oxide grains. Thus, isotopically interesting IDPs can be identified and selected on the basis of their N isotopic compositions for further study. However, this distinction does not extend to H isotopic compositions. Although both H and N anomalies are frequently attributed to the survival of molecular cloud material in IDPs and, thus, should be more common in IDPs with anomalous bulk N compositions, D anomalies are as common in normal IDPs as they are in those characterized as isotopically primitive, based on their N isotopes. This may be due to different effects of secondary processing on the isotopic systems involved.

Physical Description

PDF-file: 74 pages; size: 0 Kbytes

Source

  • Journal Name: Geochimica et Cosmochimica Acta; Journal Volume: 70

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-215066
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 884796
  • Archival Resource Key: ark:/67531/metadc873371

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 2, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 5, 2016, 8:39 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Floss, C; Stadermann, F J; Bradley, J P; Dai, Z R; Bajt, S; Graham, G et al. Identification of isotopically primitive interplanetary dust particles: A NanoSIMS isotopic imaging study, article, September 2, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc873371/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.