Theoretical Chemical Dynamics Studies of Elementary Combustion Reactions

PDF Version Also Available for Download.

Description

The purpose of this research was the development and application of theoretical/computational methods for accurate predictions of the rates of reactions in many-atom systems. The specific aim was to improve computational methods for studying the chemical dynamics of large, complex systems and to obtain a better understanding of the chemical reactions involving large polyatomic molecules and radicals. The focus was on the development an automatic potential energy surface generation algorithm that takes advantage of high-performance computing environments; e.g., software for rate calculations that direct quantum chemistry codes to produce ab initio predictions of reaction rates and related dynamics quantities. Specifically, ... continued below

Physical Description

170 KB

Creation Information

Thompson, Donald L. April 27, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The purpose of this research was the development and application of theoretical/computational methods for accurate predictions of the rates of reactions in many-atom systems. The specific aim was to improve computational methods for studying the chemical dynamics of large, complex systems and to obtain a better understanding of the chemical reactions involving large polyatomic molecules and radicals. The focus was on the development an automatic potential energy surface generation algorithm that takes advantage of high-performance computing environments; e.g., software for rate calculations that direct quantum chemistry codes to produce ab initio predictions of reaction rates and related dynamics quantities. Specifically, we developed interpolative moving least-squares (IMLS) methods for accurately fitting ab initio energies to provide global PESs and for use in direct dynamics simulations.

Physical Description

170 KB

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DE-FG02-01ER15231
  • Grant Number: FG02-01ER15231
  • DOI: 10.2172/881673 | External Link
  • Office of Scientific & Technical Information Report Number: 881673
  • Archival Resource Key: ark:/67531/metadc873327

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 27, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 7, 2016, 3:22 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Thompson, Donald L. Theoretical Chemical Dynamics Studies of Elementary Combustion Reactions, report, April 27, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc873327/: accessed June 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.