Extracting Critical Path Graphs from MPI Applications

PDF Version Also Available for Download.

Description

The critical path is one of the fundamental runtime characteristics of a parallel program. It identifies the longest execution sequence without wait delays. In other words, the critical path is the global execution path that inflicts wait operations on other nodes without itself being stalled. Hence, it dictates the overall runtime and knowing it is important to understand an application's runtime and message behavior and to target optimizations. We have developed a toolset that identifies the critical path of MPI applications, extracts it, and then produces a graphical representation of the corresponding program execution graph to visualize it. To implement ... continued below

Physical Description

PDF-file: 12 pages; size: 0.4 Mbytes

Creation Information

Schulz, M July 27, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The critical path is one of the fundamental runtime characteristics of a parallel program. It identifies the longest execution sequence without wait delays. In other words, the critical path is the global execution path that inflicts wait operations on other nodes without itself being stalled. Hence, it dictates the overall runtime and knowing it is important to understand an application's runtime and message behavior and to target optimizations. We have developed a toolset that identifies the critical path of MPI applications, extracts it, and then produces a graphical representation of the corresponding program execution graph to visualize it. To implement this, we intercept all MPI library calls, use the information to build the relevant subset of the execution graph, and then extract the critical path from there. We have applied our technique to several scientific benchmarks and successfully produced critical path diagrams for applications running on up to 128 processors.

Physical Description

PDF-file: 12 pages; size: 0.4 Mbytes

Source

  • Presented at: IEEE Cluster 2005, Boston, MA, United States, Sep 27 - Sep 30, 2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-CONF-214107
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 881659
  • Archival Resource Key: ark:/67531/metadc873257

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 27, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 5, 2016, 3:34 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Schulz, M. Extracting Critical Path Graphs from MPI Applications, article, July 27, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc873257/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.