Experimental Tests of the GDH and Other Sum Rules at SLAC

PDF Version Also Available for Download.

Description

Recent measurements from SLAC of the polarized nucleon structure functions g{sub 1} and g{sub 2} have been used to experimentally test the Bjorken, Ellis-Jaffe, Burkhardt-Cottingham, and Efremov-Leader-Teryaev sum rules. In the future, the SLAC E159 experiment will extend structure function measurements using real photons to 40 GeV, enabling a definitive test of the high energy convergence of the GDH sum rule for both proton and deuteron targets.

Creation Information

Bosted, P.E. & /Massachusetts U., Amherst June 14, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Recent measurements from SLAC of the polarized nucleon structure functions g{sub 1} and g{sub 2} have been used to experimentally test the Bjorken, Ellis-Jaffe, Burkhardt-Cottingham, and Efremov-Leader-Teryaev sum rules. In the future, the SLAC E159 experiment will extend structure function measurements using real photons to 40 GeV, enabling a definitive test of the high energy convergence of the GDH sum rule for both proton and deuteron targets.

Source

  • Prepared for 2nd International Symposium on the Gerasimov-Drell-Hearn Sum Rule and the Spin Structure of the Nucleon (GDH 2002), Genoa, Italy, 3-6 Jul 2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-11284
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 890462
  • Archival Resource Key: ark:/67531/metadc873247

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 14, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 5, 2016, 3:31 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Bosted, P.E. & /Massachusetts U., Amherst. Experimental Tests of the GDH and Other Sum Rules at SLAC, article, June 14, 2005; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc873247/: accessed November 12, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.