Final Scientific Report - "Improved Fuel Efficiency from Nanocomposite Tire Tread"

PDF Version Also Available for Download.

Description

Rolling resistance, a measure of the energy lost as a tire rotates while moving, is a significant source of power and fuel loss. Recently, low rolling resistant tires have been formulated by adding silica to tire tread. These "Green Tires" (so named from the environmental advantages of lower emissions and improved fuel economy) have seen some commercial success in Europe, where high fuel prices and performance drive tire selection. Unfortunately, the higher costs of the silica and a more complicated manufacturing process have prevented significant commercialization - and the resulting fuel savings - in the U.S. In this project, TDA ... continued below

Physical Description

248K

Creation Information

Myers, Dr. Andrew December 30, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Rolling resistance, a measure of the energy lost as a tire rotates while moving, is a significant source of power and fuel loss. Recently, low rolling resistant tires have been formulated by adding silica to tire tread. These "Green Tires" (so named from the environmental advantages of lower emissions and improved fuel economy) have seen some commercial success in Europe, where high fuel prices and performance drive tire selection. Unfortunately, the higher costs of the silica and a more complicated manufacturing process have prevented significant commercialization - and the resulting fuel savings - in the U.S. In this project, TDA Research, Inc. (TDA) prepared an inexpensive alternative to silica that leads to tire components with lower rolling resistance. These new tire composite materials were processed with traditional rubber processing equipment. We prepared specially designed nanoparticle additives, based on a high purity, inorganic mineral whose surface can be easily modified for compatibility with tire tread formulations. Our nanocomposites decreased energy losses to hysteresis, the loss of energy from the compression and relaxation of an elastic material, by nearly 20% compared to a blank SBR sample. We also demonstrated better performance than a leading silica product, with easier production of our final rubber nanocomposite.

Physical Description

248K

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DE-FG36-04GO14323
  • Grant Number: FG36-04GO14323
  • DOI: 10.2172/875756 | External Link
  • Office of Scientific & Technical Information Report Number: 875756
  • Archival Resource Key: ark:/67531/metadc873198

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 30, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 4, 2016, 2:42 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Myers, Dr. Andrew. Final Scientific Report - "Improved Fuel Efficiency from Nanocomposite Tire Tread", report, December 30, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc873198/: accessed August 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.