Some mismatches occurred when simulating fractured reservoirs as homogeneous porous media

PDF Version Also Available for Download.

Description

The understanding of transport processes that occur in naturally fractured geothermal systems is far from being complete. Often, evaluation and numerical simulations of fractured geothermal reservoirs, are carried out by assuming equivalent porous media and homogeneous petrophysical properties within big matrix blocks. The purpose of this paper, is to present a comparison between results obtained from numerical studies of a naturally fractured reservoir treated as a simple porous medium and the simulation of some real aspects of the fractured reservoir. A general conclusion outlines the great practical importance of considering even approximately, the true nature of such systems. Our results ... continued below

Physical Description

179-186

Creation Information

Arriaga, Mario Cesar Suarez; V., Fernando Samaniego & Rodriguez, Fernando January 24, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The understanding of transport processes that occur in naturally fractured geothermal systems is far from being complete. Often, evaluation and numerical simulations of fractured geothermal reservoirs, are carried out by assuming equivalent porous media and homogeneous petrophysical properties within big matrix blocks. The purpose of this paper, is to present a comparison between results obtained from numerical studies of a naturally fractured reservoir treated as a simple porous medium and the simulation of some real aspects of the fractured reservoir. A general conclusion outlines the great practical importance of considering even approximately, the true nature of such systems. Our results show that the homogeneous simplified evaluation of the energy resource in a fractured system, could result in unrealistic estimates of the reservoir capacity to generate electricity.

Physical Description

179-186

Subjects

Source

  • Proceedings, Twenty-First Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, January 22-24, 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SGP-TR-151-26
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 889767
  • Archival Resource Key: ark:/67531/metadc873175

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 24, 1996

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 8, 2016, 11:10 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Arriaga, Mario Cesar Suarez; V., Fernando Samaniego & Rodriguez, Fernando. Some mismatches occurred when simulating fractured reservoirs as homogeneous porous media, article, January 24, 1996; United States. (digital.library.unt.edu/ark:/67531/metadc873175/: accessed September 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.