CHARACTERIZING EXTREME GROUND MOTIONS AT YUCCA MTN

PDF Version Also Available for Download.

Description

Characterization of the epistemic uncertainty and aleatory variability of ground motion, as part of the Yucca Mountain nuclear waste repository PSHA (Stepp et al., 2001), results in ground motion values that increase without bound as lower and lower annual probabilities of exceedance are considered. For probabilities of exceedance less than about 10{sup -6} (yr{sup -1}), use of these results as input to the site response model leads to ground motion values for the repository that most engineering seismologists feel are not credible. To provide a defensible technical basis to develop credible emplacement level motions for extreme events, the undeformed nature ... continued below

Creation Information

W. Silva, I. Wong, J. Ake, R. Quittmeyer, and C. Costantino February 27, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Characterization of the epistemic uncertainty and aleatory variability of ground motion, as part of the Yucca Mountain nuclear waste repository PSHA (Stepp et al., 2001), results in ground motion values that increase without bound as lower and lower annual probabilities of exceedance are considered. For probabilities of exceedance less than about 10{sup -6} (yr{sup -1}), use of these results as input to the site response model leads to ground motion values for the repository that most engineering seismologists feel are not credible. To provide a defensible technical basis to develop credible emplacement level motions for extreme events, the undeformed nature of the 12.8 million year old lithophysal tuff units at Yucca Mountain provide strong constraints on the level of strain (stress) not experienced by the site since deposition of the tuff. Uniaxial unconfined compressive tests (the only tests available to the project) of the lithophysal tuff indicate axial strains of about 0.3% at fracture, which converts to approximately 0.2% shear-strain. This shear-strain limit (fracture strain), which has not occurred, is used with standard equivalent-linear (and nonlinear) point-source site response analyses to develop corresponding response spectra assuming a controlling earthquake of M 6.5 at a distance of 5 km, based on the site PSHA. In addition to the uncertainty in fracture shear-strain resulting from unconfined uniaxial tests, the analyses demonstrate that the uncertainty in nonlinear dynamic material properties of the tuff result in a factor of two uncertainty in extreme response spectra, conditional on a value of 0.2% for the fracture strain. To reduce the large uncertainty in extreme spectra, a high pressure ({approx} 1,000 ft), large scale ({approx} 1 ft{sup 3}) test device is needed that simulates earthquake loading conditions (cyclic shear strain). The test device would give direct measures of shear fracture strain for the lithophysal tuffs as well as reliable nonlinear dynamic material properties for all tuff units. Such laboratory measurements would represent the only direct measurements of ground motions not experienced by the site over the last 12.8 million years and provide the most defensible and least ambiguous characterization of extreme ground motions over the next 10,000 yrs or longer.

Source

  • Journal Name: Seismological Society of America

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: n/a
  • Grant Number: DE-AC08-91RW00134
  • Office of Scientific & Technical Information Report Number: 883070
  • Archival Resource Key: ark:/67531/metadc873169

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 27, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 2, 2016, 9:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Enlarge

PDF Version Also Available for Download.

Citations, Rights, Re-Use

W. Silva, I. Wong, J. Ake, R. Quittmeyer, and C. Costantino. CHARACTERIZING EXTREME GROUND MOTIONS AT YUCCA MTN, article, February 27, 2006; Las Vegas, Nevada. (digital.library.unt.edu/ark:/67531/metadc873169/: accessed April 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.