Annual Report Electrochemical Machining of Access Holes

PDF Version Also Available for Download.

Description

We report the advances made in electrochemical machining of access holes through sheet metal during FY2005. The cutting tool underwent a major engineering re-design to accommodate an oblong cut with parallel sides (1.5'' spacing) on a surface of arbitrary curvature. The solid cathode was replaced by an array of separately movable steel pins, allowing the tool to conform to the surface shape of the work piece prior to beginning cutting. Preliminary cuts through a hardened steel drum (0.04 inch thickness) were successfully completed at a low current (50A) but the current efficiency of the cutting process was poor (<30%). Efficiency ... continued below

Physical Description

PDF-file: 13 pages; size: 0.3 Mbytes

Creation Information

Cooper, J F; Evans, M & Whipple, R January 4, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

We report the advances made in electrochemical machining of access holes through sheet metal during FY2005. The cutting tool underwent a major engineering re-design to accommodate an oblong cut with parallel sides (1.5'' spacing) on a surface of arbitrary curvature. The solid cathode was replaced by an array of separately movable steel pins, allowing the tool to conform to the surface shape of the work piece prior to beginning cutting. Preliminary cuts through a hardened steel drum (0.04 inch thickness) were successfully completed at a low current (50A) but the current efficiency of the cutting process was poor (<30%). Efficiency was improved to 75% and the cutting time reduced to 8 minutes in heated electrolyte at 100 A and 4.5 V. This work led to improvements in process simplicity and ease of operation: (1) continuous movement of the cathode towards the work piece was eliminated in favor of a fixed cathode; (2) the surfaces of the cutting pins do not require insulation; (3) a spider support for the tool provides for rapid positioning of the cutting tool; (4) negative electrolyte pressure minimized leakage into the drum following breakthrough. We found no reactivity of various HE's with alternative candidate ECM electrolytes.

Physical Description

PDF-file: 13 pages; size: 0.3 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: UCRL-TR-218350
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/881665 | External Link
  • Office of Scientific & Technical Information Report Number: 881665
  • Archival Resource Key: ark:/67531/metadc873118

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 4, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 6, 2016, 7:03 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Cooper, J F; Evans, M & Whipple, R. Annual Report Electrochemical Machining of Access Holes, report, January 4, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc873118/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.