AGS to RHIC Beam Line: Application Codes
Waldo MacKay and Todd Satogata

Waldo

- Description of the ATR beamline (AGS to RHIC)
- Commissioning strategy
- General philosophy of application design (SDS and Glish)
- What applications do we need?
- General conclusions (Waldo's)

Todd

- Application tools and environment (SDS, Glish, C and C++)
- Design philosophy revisited
- Beam threading for the ATR
- More conclusions (Todd's)
- Quads
- Dipoles
- Vert. Dipole

\[100 \text{ m}\]

\[20^\circ \text{arc}\]

\[8^\circ \text{arc}\] = \[4^\circ \text{arc}\]
ATR Injection line summary

I U-line:
A Match beam from AGS into W-line
B Stripping foil: Au$^{+77} \Rightarrow$ Au$^{+79}$

II W-line:
A Vertical drop of 1.7m
B 20° bend to reach 6–12 o’clock symmetry line
 (Requires zero dispersion upstream and downstream of the 20° arc.)
C 6 Quads at end of W-line match into the 90° arcs.

III Y-line:
A Bend almost 90° into the Yellow (ccw) ring.
B 6 Quads at end of Y-line match into RHIC.
C Vertical injection into RHIC with lambertson.

IV X-line:
A Bend almost 90° into the Blue (cw) ring.
B 6 Quads at end of X-line match into RHIC.
C Vertical injection into RHIC with lambertson.

V Injection kickers inside each ring.
U, W, Y-lines

Diagram showing plots of $\beta [m]$ and $\eta [m]$ against $s [m]$.
U-line

YTransfer

$\beta [m]$ vs $s [m]$

$H \quad V$

$\eta [m]$ vs $s [m]$

range: 0.0 to 164.6
Y-line

\[\beta \text{[m]} \]

\[\eta \text{[m]} \]

\[s \text{[m]} \]

H — V —
$U, W + X$-lines

\[\beta [m] \]

\[\eta [m] \]

\[s [m] \]
Changes

- 5 new planes of BPM's for better steering.
- Moved 2 flags and added 2 new ones.
 (Better emittance measurements.)
- BLM's allocated.

- Magnets about 50% complete.
- At least 8 dipoles have been installed in the tunnel.
- Field quality of magnets seems good.
Commissioning Strategy

I Things to do before beam tests
 A check cooling water on magnets
 B ramp magnets
 C check polarities of magnets
 D pump down line and check vacuum
 E check interlocks
 F check other hardware
 1 BPM's: cables and electronics
 2 BLM's (with a radioactive source)
 3 Flags: read back pictures with calibration lights
 4 Scrapers: check motor control and location readbacks.
 5 Current transformers and electronics
 6 Timing system: check signals
 a to transformers
 b to BPM's
 c eventually to injection kicker system
 G Test connection to RHIC abort system
II With beam (~ 10^{10} charges of some species, 1 pulse/30 sec)
 A Thread beam down the U and W-lines.
 1 Steer the beam onto the flags.
 2 Measure the location with the BPM's.
 3 After reaching a flag with a reasonable trajectory, remove the flag and go on to the next one.
 B Measure the pulse stability from the AGS.
 1 Current
 2 Position
 3 Profile on flags
 C Measure the transverse matrix elements (C, S, C', S') for both x and y.
 1 Measure the beam location at all BPM's.
 2 Change UTU1 by a small amount and remeasure the trajectory.
 3 Reset UTU1 to previous value and remeasure the trajectory.
 4 Change UTH2 by a small amount and remeasure the trajectory.
 5 Calculate the expected deviations and compare with data.
 D Measure the dispersion elements of the beamline (D, D').
 1 Measure the trajectory.
 2 Change the momentum of the AGS extracted beam.
 3 Remeasure the trajectory.
 4 Calculate the values of D and D' at the BPM locations.
 5 Compare with the expected values.
 E Attempt to measure momentum spread with collimator UC1.
 F Measure the beam shape (hyperellipsoid)
 1 Measure the profile at flags UF3, UF4, and UF5
 2 Measure the profile at flags WF1, WF2, and WF3
 3 Calculate emittances, betas, and alphas (horiz and vert) at the flag locations.
 G Tune the U-line quads to best match the desired values going into the W-line.
 1 Note that the dispersion should be zero at the entrance to the W-line (20° arc).
 H Tune the W-line quads to best match the desired values just upstream of SWM (switch magnet).
 I Scan aperture
III Fault studies.
 A Check for radiation leaks when the beam hits certain key elements. Of particular interest are:
 1 Access doors, particularly in the split region.
 2 Penetrations for cables and ventilation shafts.
 3 Thin shielding areas.
 4 The top of the berm where Thompson road crosses the beamline.
General Philosophy

- Use Sybase database server
 - archive data
 - define configuration.

- Use shared memory.
 - shares data between processes.

- Glish sequencing language
 - Connects programs
 - Event interrupts
 - Data passing
 - Communication across network

- SDS data format: Selfdescribing data structures
 - Hardware independent binary format
 - Header contains structure info, e.g., variable names.

- Graphical interfaces should be separate programs.
 - Should run under X-windows.
 - Should generate and receive Glish events.
 - Should be able to be replaced by a Glish script in order to automate an established sequence.
Possible Application Codes

I Basic applications
 A Parameter and Status Pages
 1 Power supply status, settings and limits
 2 Vacuum status
 3 Interlocks
 4 Alarms
 5 Lamberson elevation control?
 6 Scraper control
 a Position control
 b Position readback
 7 Current transformers
 a Readings
 b Gain settings
 c Timing
 8 BPM's
 a Gain settings
 b Timing
 9 BLM status, readings, gain settings
 B Injection pulse control
 1 AGS extraction kicker
 a status, voltage, timing
 2 RHIC injection kicker
 a status, voltage, timing
 3 RF
 a status, voltage, timing
 4 RHIC abort status (go–no go)
 a vacuum, cryogenics, ...
 C Magnet ramp control

II Utilities
 A Namespace server ("phonebook")
 B Logging server
 C Conversion: $\vec{I} \leftrightarrow \vec{B}$
 D SID: an SDS data editor–viewer
 E KASPAR: an SDS data plotter

III Beam threading
 A Beam steering display (horiz and vert)
 1 Aperture display
 a beam pipe
 b collimators (variable)
 c lambertsons (variable)
 2 Predicted trajectory
 3 Predicted beam envelope
 4 BPM measurements
 5 Locations and sizes information from flags
 6 Show locations
 a Magnets
 b BPM's
 c Flags
 d Scrapers
 e Stripping foil, if there
 f BLM's
g collimators
7 Indicate beam loss in BLM's
B Beam threading code (computations)

IV Profile measurements
A Single Flag profiles
 1 Multiplexing
 2 Calibration
 3 Views of flag
 a 2d intensity plot
 b 1d projections
B Beam Hyperellipsoid measurement
C display of correlated flag measurements

V Injection sequence (possibly just a Glish script)
A Species and momentum
B set magnet currents
C Number of bunches
D Bunch timing
E ...
Name Lookup[144]	lattice_index	473
	atom_index	313
	fid_index	-1
	network_index	-1
	type	8
	orientation	1
	InOut[2]	
	Section[3]	Y
	DeviceName[8]	d
	DevNo	23
	SiteWideName[20]	yd23
	SurveyName[16]	YD23
	SerialName[20]	ATRCB16
	LatticeName[20]	yd23
	GenericName[20]	B-focus
	CoordinateType[4]	IP
	Scoord	511.071287
	Sequiv	511.071287
	Ncoord	31681.053034
	Wcoord	4.723158e-02
	Ecoord	0.3264.959942
	theta	0.413932
	phi	4.376867e-05
	psi	9.087410e-05
Profile Monitor Programs

Diagram:

- **WS**
 - **pvwave**
 - **Image File**
 - **PmUi**
 - **PM sds**
 - **PmManager**
 - **PM ADO Software in FEC**
 - **Simulator**
 - **kaspar, sid, ...**
Development Environment

1) Data structures and transfer
 * SDS / shared memory at high level
 * Communication protocols are well-established
 * Data structures are shared and jointly developed between Instrumentation, Controls and Physics

2) High level process communication
 * Glish is used for both low-level and high-level sequencing.

3) Sybase database
 * Front-end configuration data
 * Lattice/simulation information
 * Data archiving and logging

4) General development environment
 * C/C++ and unix, although not exclusively
 * Interfaces are X/Motif
Beam Threading Objectives

Primary (required for AtR Commissioning in '95)
* Measure/Archive orbit data, shot-by-shot
* Correct global orbit in each plane
* Use BLMs/BPMs for correction information
* Interface with optics database for simulation

2) Secondary (not required for commissioning)
* Control individual 3- and 4-bumps
* Allow (x,x') specification at any point in beamline
* Minimize corrector strengths
* Use profile monitors as accessory BPMs
* Correct orbit downstream of last 3-bump
Beam Threading Hardware in AGS to RHIC Transfer Lines (5/5/94)

<table>
<thead>
<tr>
<th></th>
<th>U line</th>
<th>W line</th>
<th>X,Y lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal BPMs</td>
<td>6</td>
<td>5 (1)</td>
<td>6 (1)</td>
</tr>
<tr>
<td>Vertical BPMs</td>
<td>4</td>
<td>5 (1)</td>
<td>8 (1)</td>
</tr>
<tr>
<td>Horizontal Correctors</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Vertical Correctors</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>BLM Channels</td>
<td>12</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Profile Flags</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Parenthesized BPM planes added 12/93

BLMs are used to diagnose aperture losses and alter correction weights.

Flags can be used as dual-plane BPMs during commissioning.
AGS to RHIC Beam Threading Processes and Data

Shared Memory

User Interface

Correction Data

Orbit Correction

Glish

BLM Manager

BPM Manager

PS Manager

Controls

Networking

Front-End Crate Computers

Data

Event / Data Flow

Process
Start up clients, or processes to manage
NQ := client("Namequery") # Client to look up names of things
UI := client("BeamThreadUT") # Client to act as user interface
BLM := client("BLM_Manager") # Client to manage BLM data/interface
BPM := client("BPM_Manager") # Client to manage BPM data/interface
PSM := client("PS_Manager") # Client to manage PS data/interface

Whenever the user requests a list of BPM names, go to
the NameQuery process and ask it for such a list.
whenever UI->GetBpmNames do
 # Set which namespace to use
 NQ->Display("/usr2/local/Holy_Lattice/ETransfer/Namespace")

 # Send search query, listing field to match and field to return
 NQ->Search(Dataset = "Namespace",
 Datatime = "NameLookup.DeviceName",
 Pattern = "b",
 Return = "NameLookup.SiteWideName",
 Start = SearchStart,
 SearchType = "inexact")

whenever NQ->Put do
 UI->Put($Value)

whenever UI->Corrector do
 shell("clorbit -x -y")

...
Orbit Correction Algorithm for Beam Threading

Three-Bumps

Correctors

1 2 3

Beamline

BPMs

BLMs

Successively and iteratively corrects overlapping three-bumps down beamline

Uses easily modifiable weighting schemes

Requires linear optics model of beamline, but is strongly robust due to iterative corrections.
Transfer line orbit correction simulation -
- 0.5 mm random quad displacements
- 1.0 mrad random dipole rolls
- Uses correction algorithm that will be applied in ATR commissioning
- See RHIC AP note #24 for additional details.

Vertical closed orbit sigma, 20 seeds, after correction

Directory BeamThreading on 05/05/94

Physical Aperture

1σ orbit (corrected) - vertical

Corrected orbit σ(Yco) (mm)

Path length s (meters)

Corrector
BPM
Conclusions

1) Development environment is adequate for application design
 * SDS / shared memory for data transfer
 * Glish for low/high level sequencing
 * Interfaces to low-level controls under development
 * Environment is C/C++ with X graphics

2) Beam threading and hyperellipse applications are on schedule for ATR commissioning.

3) Other applications are well-defined, with tools available for their development on schedule with commissioning. Of highest priority is a parameter page application.

4) True vertical integration has been accomplished with profile monitor measurements in the BTA line; this remains to be done with beam threading.